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ABSTRACT

Multichannel techniques offer advantages in noise reduction and
overall output signal quality when compared to the well studied
mono approaches. In this paper we present an original multichan-
nel psychoacoustically motivated noise reduction algorithm that
naturally extends the single channel psychoacoustic masking filter
previously studied in the literature [1]. The optimality criterion
is designed to simultaneously satisfy the psychoacoustic masking
principle and minimize the signal total distortion. In experiments
on real data recorded in a noisy car environment, we show the
enhanced performance of the two-channel solution in terms of ar-
tifacts and overall tradeoff between artefacts and amount of noise
removed as given by word recognition rates.

1. INTRODUCTION

Recent signal processing literature describes a variety of approaches
to the ubiquitous noise reduction / speech enhancement problem.
Many approaches still use a single microphone solution ([2] and
references therein). Research in microphone-array systems indi-
cate the promise of such techniques for speech enhancement and
hands-free communication applications in noisy environments [3,
4]. Theoretically, multi-channel techniques offer more informa-
tion about the acoustic environment, therefore should indeed offer
possibility for improvement especially in the case of reverberant
environments due to multi-path effects and severe noise conditions
known to affect the performance of state-of-the-art single channel
techniques. The effectiveness of multiple channel techniques for
just a few microphones is yet to be proven.

Beamforming techniques and in general approaches grounded
in the array processing literature [5, 6] indicate tiny SNR improve-
ments in the case of a small number of microphones. Rather than
directly considering such approaches, we explore extensions of
successful mono noise reduction technique to multiple channels.

Outstanding among the mono approaches is the psychoacous-
tically motivated method proposed in [7]. This method uses an
observation from human hearing studies known as tonal masking.
Tonal masking means that a given tone becomes inaudible by a lis-
tener if another tone (the masking tone) with a similar or slightly
different frequency is simultaneously presented to the listener [8].
This means that for a given speech signal (or more specific, for
a given spectral power density), there is a psychoacoustic spec-
tral threshold so that any interferer of spectral power below this
threshold becomes unnoticed.

Most denoising schemes trade off speech intelligibility (for in-
stance as measured by the articulation index [9]) for the amount
of noise removed as measured by signal-to-noise-ratio (SNR) [7].

Moreover, it is sometimes desirable to preserve the background
noise characteristics. Therefore the entire removal of the noise is
neither desirable nor possible. More feasible is to reduce noise
level down to the psychoacoustic threshold level but not below it.
In this framework, our approach generalizes the psychoacoustic
noise reduction approach to multiple channels. Our approach ex-
ploits the microphone array signals to further enhance the useful
speech signal at reduced level of artifacts.

The layout of the paper is as follows. Next section introduces
the model assumptions used in the present approach. Section 3
derives the psychoacoustic masking based signal estimator. Then
section 4 states the identification algorithms for the components
of our model. Section 5 discusses three evaluation criteria used
(objective, subjective and speech recognition rates) and presents
experimental results on noisy car speech data. We compare the
two-channel speech enhancement system with the single channel
psychoacustic method of [1]. Section 6 summarizes this work.

2. MULTI-CHANNEL MODEL AND ASSUMPTIONS

The mixing model we consider is as follows. We assume D mi-
crophone signals x1(t), . . . , xD(t), record a source s(t) and noise
n1(t), . . . , nD(t) signals,

xl(t) =

Ll∑
k=0

al
ks(t − τ l

k) + nl(t) (1)

where (al
k, τ l

k) are the attenuation and delay on the kth path to mi-
crophone l. In frequency domain, the convolutions become mul-
tiplications. Furthermore, since we are not interested in balancing
the channels, we redefine the source so that the first channel be-
comes unity:

X1(k, ω) = S(k, ω) + N1(k, ω)

X2(k, ω) = K2(ω)S(k, ω) + N2(k, ω)

· · · (2)

XD(k, ω) = KD(ω)S(k,ω) + ND(k, ω)

where k is the frame index, and ω the frequency index. More
compactly, this model can be rewritten as

X = KS + N (3)

where X, K, S, N are D-complex vectors. Regarding this model,
we make the following assumptions:

1. S(ω) are zero-mean stochastic processes with spectral power
ρs(ω) = E[|S|2];



2. (N1, N2, . . . , ND) is a zero-mean stochastic signal with
spectral covariance matrix

Rn(ω) =




E[|N1|2] E[N1N2] · · · E[N1ND]
E[N2N1] E[|N2|2] · · · E[N2ND]

· · · · · · · · · · · ·
E[NDN1] E[NDN2] · · · E[|ND |2]


 ;

(4)

3. s is independent of n.

Section 4 describes how we estimate K, ρs and Rn.

3. ALGORITHM DESIGN

Consider a linear filter

A =
[

A1 A2 · · · AD

]
(5)

applied to the measured signals X1, . . . , XD . The output becomes:

Y =
D∑

l=1

AlXl = AKS + AN (6)

Suppose we would like to obtain an estimate of S that contains a
small amount of noise. Let 0 ≤ ζ1, . . . , ζD ≤ 1 be given constants
such that the desired signal is:

W = S + ζ1N1 + ζ2N2 + · · · + ζDND (7)

Since source signal s and noise signal n are independent, the esti-
mation error E = Y − W has the variance:

Re = |AK − 1|2ρs + (A − ζ)Rn(A∗ − ζT ) (8)

where ζ = [ζ1, · · · , ζD] is the 1 × D vector of desired levels of
noise. In [1], the idea was to design the filter(s) so that the dis-
tortion term due to noise achieves a preset value RT , called the
threshold masking, depending solely on the signal spectral power
ρs. The idea is that any noise whose spectral power is below this
threshold is unnoticed, therefore why cancel the noise completely
when we don’t notice it below RT ; furthermore, by doing less
noise removal, the artifacts would be smaller as well (see detailed
descrption of this in [1]). Following this idea, we would like our
filter to achieve a noise distortion level of RT . Yet, we have D
unknowns and one constraint so far. This leaves us with D− 1 de-
grees of freedom. We can use these degrees of freedom to choose
A that minimizes the total distortion. Thus the optimization prob-
lem becomes:

argminARe , subject to (A − ζ)Rn(A∗ − ζT ) = RT (9)

Suppose Ao is the optimal solution. Then we validate it by check-
ing whether |AoK| ≤ 1. When it is not true, we choose not to do
any processing (perhaps the noise level is already lower than the
threshold, so why amplify it). Hence:

A =

{
Ao if |AoK| ≤ 1

(1, 0, · · · , 0) otherwise
(10)

Set B = A − ζ and construct the Lagrangian:

L(B, λ) = |BK + ζK − 1|2ρs + BRnB∗ + λ(BRnB∗ − RT )

we obtain the system:

K∗(BK + ζK − 1)ρs + BRn + λBRn = 0

K(K∗B∗ + B∗ζT − 1)ρs + RnB∗ + λRnB∗ = 0

BRnB∗ − RT = 0

Solving for B in the first equation and inserting the expression into
the second equation, we obtain with µ = (1 + λ)/ρs:

RT = |1 − ζK|2K∗(µRn + KK∗)−1Rn(µRn + KK∗)−1K

Using the Inversion Lemma (see [2]) the equation in µ becomes:

µ = −K∗R−1
n K ± |1 − ζK|

√
K∗R−1

n K

RT
(11)

Replacing in Re, we obtain:

Re = RT + ρs| ±
√

RT (K∗R−1
n K) − |1 − ζK||2

Hence the optimal solution is the one with ’+’ in (11). Conse-
quently, the optimizer becomes:

Ao = ζ +
1 − ζK

|1 − ζK|
√

RT

K∗R−1
n K

K∗R−1
n (12)

In practical application we have chosen ζ1 = ζ and ζk = 0, k > 1,
which simplifies the final expression of our estimator. Then:

Ao = (ζ, 0, · · · , 0) +

√
RT

K∗R−1
n K

K∗R−1
n (13)

and

|AoK| = ζ +

√
RT (K∗R−1

n K)

Note that we have obtained a closed form solution for the filter
A in equation 6, similar to the one obtained in [1]. On the other
hand, the connexion between single-channel and multi-channel es-
timators is similar to connexion established in [10]. Indeed, the
multidimensional signal X is first filtered by 1

K∗R−1
n K

K∗R−1
n to

a scalar signal

Z =
1

K∗R−1
n K

K∗R−1
n X = S +

1

K∗R−1
n K

K∗R−1
n N (14)

whose noise effective spectral power given by Reff
n = 1

K∗R−1
n K

.

Then, the Gustafsson filter HG = ζ +

√
RT

R
eff
N

is applied to Z

in order to obtain the estimation Y . Among many possible Multi-
Input-Single-Output filter, the choice (14) is optimal with respect
to criterion (9).

4. MODEL IDENTIFICATION

We turn now our attention to the estimation and identification of
the model stated in the previous section.

4.1. An Adaptive Model-Based Estimator of K

In this work we consider what we call an adaptive model-based
estimator of K, which makes use of the simple but effective direct-
path mixing model. Accordingly, the transfer function ratios are
parameterized by only delay and attenuation parameters:

Kl(ω) = ale
iωδl , l ≥ 2 (15)

The idea is to update the direct-path model while observing
the mixing equations in order to track K adaptively.

Considering the statistical independence signal-noise, the short-
time spectral power of the measured signal Rx(k, ω) is:

Rx(k, ω) = ρs(k, ω)KK∗ + Rn(k, ω) (16)



Delay and attenuation parameters are determined so that we best fit
(16), for every ω, in the Frobenius norm (‖A‖2F = trace{AA∗}).
Thus the criterion to be minimized is:

J(a2, . . . , aD, δ2, . . . , δD) =
∑

ω

trace{(Rx−Rn−ρsKK∗)2}
(17)

The summation across the frequencies shows that the same pa-
rameters (al, δl)2≤l≤D have to explain all the frequencies. The
gradient of J evaluated on the current estimate (al, δl)2≤l≤D is

∂J

∂al
= −4

∑
ω

ρs · real(K∗Evl) (18)

∂J

∂δl
= −2al

∑
ω

ωρs · imag(K∗Evl) (19)

where E = Rx−Rn−ρsKK∗ and vl = [0 · · · 0 eiωδl 0 · · · 0]T .
In words, vl is a D-vector of zeros everywhere except on the lth

entry where it is eiωδl .
Then the parameter update rules are:

a
′
l = al − α

∂J

∂al
(20)

δ
′
l = δl − α

∂J

∂δl
(21)

where 0 ≤ α ≤ 1 is the learning rate.

4.2. Estimation of Spectral Power Densities

The estimation of the noise covariance Rn is based on a voice
activity detector (VAD) signal:

Rn =

{
(1 − β)Rold

n + βXX∗ if voice present
Rold

n otherwise
(22)

An approximate ρs is satisfactory. [7] outlined that even a
rough estimate by spectral subtraction is good enough in psychoa-
coustic filtering. ρs would not be used directly in the signal esti-
mation Y (equation 6), but only in the evaluation of the masking
threshold RT and the update rules for delay and attenuation pa-
rameters (and therefore K). Therefore the signal spectral power
ρs is estimated by spectral subtraction:

ρs =

{
Rx;11 − Rn;11 if Rx;11 > βSSRn;11

(βSS − 1)Rn;11 if otherwise
(23)

where βSS > 1 is a noise floor constant.

4.3. Estimation of Voice Presence: VAD

For voice estimation we rely on the multi-channel approach de-
scribed in [11] and exploit the spatial location of the voice source
even in the presence of diffuse noise. The main idea is that a multi-
channel filter H to maximize filter output SNR is extremely good
at highlighting voice presence in adverse environments, although
it may be poor for speech enhancement by itself. The maximum
SNR objective criterion is:

J(H) =
E[|AKS|2]
E[|AN |2] =

ρsAKK∗A
ARnA∗ (24)

[11] shows that the closed form solution for H can be obtained by
solving a generalized eigenvalue problem:

H = ρsK
∗R−1

n (25)

H above has the property of maximizing output energy when the
voice signal is present. The resulting VAD is:

V AD(k) =

{
1 if |HX|2 ≥ γ|X|2
0 otherwise

(26)

where γ > 0 is a constant boosting factor for the signal energy.
Note that the VAD decision on the present data frame will only
be used in the next frame estimation of noise parameters, and sub-
sequently speech spectral power, transfer function ratios K and
finally the adaptive filter A.

With the design of the VAD, now we have a complete scheme
(see Figure 1) for multi-channel psycho-acoustically motivated speech
enhancement, whose implementation we test next.

Fig. 1. Block diagram of the multi-channel psychoacoustic speech
enhancement system.

5. EXPERIMENTAL RESULTS

For a practical implementation, we considered the case of two
channels, D = 2. We used 8KHz stereo recordings from a noisy
car environment. Input data had on average -6.5dB overall SNR.
Example waveforms are plotted in Figure 2.

The time-frequency analysis was done with a Hamming win-
dow of size 512 samples with 50% overlap. Rx was estimated by
a first-order filter with learning rate of 0.9. Other parameters were
βSS = 1.1 (see equation 23), β = 0.2 (22), ζ = 0.001 (12),
learning rate α = 0.01 (21), VAD boosting factor γ = 100.

We applied the two-channel psychoacoustic noise reduction
algorithm on a set of voices (male and female) superimposed with
noise segments from two noise files (four combinations overall).
For comparison, we also implemented the single channel psychoa-
coustic masking based filter as proposed in [7].

The evaluation of the speech enhancement algorithm consisted
of (1) qualitative subjective measure; (2) objective measures; and
(3) automatic speech recognition (word error rate measure). The
qualitative measure is based on mean opinion score rankings and
qualitative listening. The objective measures reported here are the
average instantaneous SNR gain and distortion, each defined as
follows:

aGain =
1

M

∑
k

10 log10

‖AKS(k)‖2

‖S(k)‖2

‖N1(k)‖2

‖S1(k)‖2
(27)

Dist =
1

M

∑
k

10 log10

‖ys − s1‖
‖s1‖ (28)

where M is the number of blocks when voice is present and ys

is the time domain estimate of the signal component in Y (that
is AKS). Ideally, the distortion measure should be a large nega-
tive number while the average SNR gain should be a large positive
number. The detailed description of the automatic speech recog-
nition implementation, experiments and evaluation is provided in
[12].
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Fig. 2. Input 2-channel waveforms (top two plots), and the filter
output (bottom); the VAD decision is superimposed on the second
channel waveform.

Two Channel Single Channel
aGain Dist aGain Dist
3.83 -15.35 6.58 -8.94
2.72 -21.56 6.14 -10.68
5.35 -20.38 7.81 -18.19
4.57 -22.93 7.41 -20.75

4.12 -20.06 6.99 -14.64

Table 1. Comparison of objective measures: average instanta-
neous SNR gain (aGain) and distortion (Dist), for two channel and
one channel psychoacoustic algorithms, four data sets.

Tables 1 and 2 present the results obtained. In terms of average
instantaneous gain, Table 1 shows better SNR numbers for the sin-
gle channel solution, but considerably lower distortion for the two
channel algorithm versus the single channel algorithm. Listening
tests strengthened this conclusion. Furthermore, speech recogni-
tion tests showed improved word recognition rates particularly un-
der high noise conditions. The mono speech enhancement alterna-
tive in the automatic speech recognition tests was recursive Spec-
tral Subtraction (see [12]), which is similar to our speech spectral
power estimation.

The two channel algorithm output had little speech distortion
and noise artifacts compared to the mono solution, being clearly
the preferred choice.

6. CONCLUSION

Taking into account psychoacoustic masking principles for speech
enhancement has proven useful on sigle channel data. In this paper
we extend the approach to the multi-channel case. The solution is
original in its extension of the single channel psychoacoustically

Scheme Clean speech Low car noise High car noise
SNR ≥ 20 dB 7 ≤ SNR ≤ 14 dB SNR ≤ 7 dB

Ch.1 (in) 80.9% 55.0% 30.15%
Ch.2 (in) 86.93% 68.5% 35.67%
Ch.1 (SS) 88.44% 73.50% 63.81%
Ch.2 (SS) 90.95% 75.00% 51.76%
Two-ch. 92.69% 94.5% 77.38%

Table 2. Word recognition rates for data at three noise levels: (1)
unprocessed; (2) processed by a mono spectral subtraction (3) en-
hanced by the two-channel psychoacoustic algorithm.

motivated constraint. The optimality criterion not only satisfies
this principle but also minimizes the total signal distortion. The
role of the latter constraint is critical: significantly reduced distor-
tions are observed in tests with the two-channel implementation of
the method on noisy data from a car environment. Experimental
tests showed the capabilities of our two-channel implementation
in terms of artifacts and SNR gain. Future work will further test
the scalability of the method particularly for the three-four channel
cases.
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