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Abstract 

This paper shows that the performance of a Gaussian Mixture 
Model using a Universal Background Model (GMM-UBM) 
speaker verification (SV) system can be further improved by 
combining it with threshold and speaker identification (SI) 
“front-ends.” The paper formulates performance in terms of 
false rejection rate and false acceptance rate of the overall SV 
system. We show analytically that an SI-based front-end can 
significantly decrease the false acceptance rate and only results 
in a slight increase in the false rejection rate. Experimentally we 
use a subset of NIST 2001 speaker recognition corpus with 10 
registered speakers of 20 utterances against 10 imposters of 960 
utterances. The results show significant reduction in the false 
acceptance rate, from 3.5% down to 1.0% (i.e. 71% error 
reduction) while maintaining the same zero false rejection rate. 

1. Introduction 

The state of the art GMM-UBM speaker verification system 
can be further improved. One way is to use discriminative 
kernels like the score-space kernel, which has reported to 
achieve 34% error reduction [1]. This paper focuses on another 
method to combine different verification techniques like the 
threshold and the identification front-end, and we have achieved 
71% error reduction in experimentation.  

Three speaker verification methods are shown in figure 1: 
(a) the threshold-based method, where the decision of rejection 
or acceptance is based on a threshold associated for each 
speaker GMM model which was chosen so that the false 
rejection rate (FR) and the false acceptance rate (FA) satisfy 
certain criterion, such as FR equals FA, or FA < 90%, etc. (b) 
the UBM-based method, in which a universal background model 
(UBM) [2] is created from all the registered speakers, and is 
used to against the individual models for binary classification. 
(c) the SI-based method, where the similarity score is calculated 
exhaustively for each speaker model in the database. The best 
matched model in agreement with the claimed identity can lead 
to accept decision. Here we used similarity to generalize the 
matching score, which can be the logarithm-likelihood in the 
GMM model [3] or the inverse of the distance measure in the 
VQ model [4]. 

This paper studies several approaches to combine these three 
different methods into a more robust decision system. We will 
show performance improvement in detail when the method (c) is 
used as a first stage process cascaded before the method (a) or 
(b). For that reason, method (c) is called the identification front-
end. Then the method (a) and (b) are further employed either 
alone or combined together as follows to provide the best 
performance. If both (a) and (b) accept results in a final accept 
decision, and if either (a) or (b) reject results in a final reject 
decision. The same mechanism can also be used to enhance the 
speaker identification system, in which the verification threshold 
or an universal background model can be used to eliminate false 

identifications for test voices from unregistered speakers that 
have no corresponding voice models in the system database. 

This paper is organized as follows. The section 2 first 
formulates the performance indexes of proposed system, and 
then the section 3 analyzes those equations for the speaker 
verification task. The section 4 presents the results from NIST 
2001 speaker recognition corpus experiments. The section 5 
draws conclusions. 

 

Figure 1 – Illustrations of speaker recognition systems; (a) the 
individual threshold-based speaker verification system; (b) the 
UBM-based speaker verification system; (c) the speaker 
identification (SI)-based speaker verification system. 

2. Performance Formulation 

For the simplicity, the following analysis assumes the 
combination of methods (c) and (a), but same analysis can also 
be applied to the combination of methods (c) and (b) if the log-
likelihood scores were replaced with the log-likelihood ratios.  

Let a speaker recognition system have MN  registered 

speaker models. Given IN  testing voices from registered 

speakers, and ON  testing voices from imposters, there can be 

)(* OIM NNN +  possible matching scores )(Ms  between a 

testing voice and a model M , as illustrated in figure 2. 

Let CAN  be the total number of correct acceptances among 

IN  registered speakers’ testing voices. Let CRN  be the total 

number of correct rejections among ON  imposters’ testing 

voices. Let CIN  be the total number of correct identifications 



among IN  registered speakers’ testing voices. The performance 

indexes of a combined SV system of (c) and (a): the false 

rejection rate FRR , the false acceptance rate FAR , and the 

speaker identification rate IDR  can be calculated as follows. 

 

Figure 2 - All possible matching scores of a speaker 
recognition system for NM voice models, NI testing 
voices from registered speakers and NO testing voices 
from imposters. 
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where the denominators are the total number of events that will 
happen and numerators are the true events. For example, the 
voice from imposters should all be rejected, thus the total 
number of events is 

MO NN . The voice from registered users 

should only be rejected for incorrect models, thus the total 
number of events is )1( −MI NN , as in (2). 

For threshold-based speaker verification system, the score is 
only calculated between a testing voice and a claimed identity 
voice model, and then compared with a threshold for acceptance 

or rejection. Its false rejection rate )(, TR TFR  and false 

acceptance rate )(, TR TFA  for a give threshold T  are 

determined by the corresponding conditional probabilities as 
follows:  

∞→∈≥−=

−=

I

I

CA
TFR

NMvTMsP

N

N
TR

)|)((1

1)(,
 (4) 

∞→+∉<−=
−+

−=

OI

MIMO

CR
TFA

NNMvTMsP

NNNN

N
TR

)|)((1

)1(
1)(,

(5) 

For a combined speaker verification system that uses the 
identification front-end, the scores of a testing voice for all the 
voice models are calculated. If only the identification output or 

the model with the maximum score, agrees with the claimed 
identity model, the score is then compared with a threshold for 
further rejection of imposters who do not have a model in the 

system. Its false rejection rate )(, TR IFR  and false acceptance 

rate )(, TR IFA  for a threshold T  are given as follows: 
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where (6) is due to that only correctly identified voice from 
registered users using the identification-based front-end can be 
further correctly accepted using the threshold-based SV system. 
The equation (7) can be explained as follows. The first term is 
due to the fact that the correct identification of a voice from 

registered users will also reject it from the rest 1−MN  wrong 

models, and the total number of events of correct identification 
of voices from registered users is )1( −MCI NN . The second 

term is due to the fact that even an incorrect identification of a 
voice from registered users will also correctly reject it from the 

rest 2−MN  wrong models, and the total number of events of 

incorrect identification of voices from registered users is 

)2)(( −− MCII NNN . The third term is due to the fact that the 

identification process will always correctly reject a voice from 

imposters for 1−MN  wrong models, and the total number of 

these events is )1( −MO NN . The fourth term is due to the fact 

that the threshold-based verification as in (5) is only for the 
imposters and thus the total number of events is the total 
number of imposters times the probability of correct rejection. 

3. Performance Analysis 

 To compare the two verification systems, we can compute 
and compare the performance indexes (4) versus (6) and (5) 
versus (7). One can derive that (7) is a monotonic decreasing 

function with respect to MN , as the partial derivative of 

)(, TR IFA with respect to MN  is always less than zero, and 

furthermore the )(, TR IFA  will approach zero as MN  

approaches infinity.  
Assuming a uniform posterior distribution of the 

identification results: 
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Therefore, it can be concluded that the following is true in 
general. 
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In other words, the identification front-end can drastically 
decrease the false acceptance rate but with a small increase of 
false rejection rate. The latter can be compensated up to the 
identification rate limit, i.e. 

IDR−1 , by lowering T  so that 

1)|)(( →∈> MvTMsP . If )|)((0 MvTMsPP ∈≥= , 

)|)((1 MvTMsPP ∉<= , )|)(ˆ(2 MvTMsPP ∉<= , 

the figure 3 top plot assumes constant probabilities, while in the 

bottom one, 
2P  is decreasing proportionally with MN , and 

constant others. In any case, (10) is indeed true. 
 

 
Figure 3 – Theoretic speaker verification performance 

indexes plots: (a) P0=0.9, P1=0.91, P2=0.85, RID=0.98, 
NO=100, NI=20; (b) P0=0.9, P1=0.91, P2=0.85/NM, RID=0.98, 
NO=100, NI=20. 

4. Experiments 

Speech signals from 20 different identities (10 male and 10 
female) are taken from NIST 2001 speaker recognition corpus 
in “devtest-training” section. 10 of them are used as registered 
users, and 10 are used as imposters. The wave files are cut into 
several pieces each 10 ~ 20 sec length, 16 bit and 8 KHz. For 
the 10 registered users, 2 pieces are used for testing, 4 ~ 8 
pieces are used for orthogonal GMM [5] individual model 
training, and rest 2 ~ 3 pieces are grouped together for UBM 
training. For 10 imposters, all the pieces are used for testing, 
and each piece will test all the 10 registered users. 

All the speech signals are converted into feature vectors of 
MFCC coefficients [6]. 10 individual models and one UBM are 
created from the training feature vectors, corresponding to 
registered speakers, with id listed in the first row of table 1. 
Each testing utterance from both registered speakers and 
imposters is then used to compare with each model to generate a 
normalized logarithm likelihood score, as shown in table 1. 

Table 1 – Normalized log-likelihood scores of a GMM 
system with 10 registered models with id listed in the 
first row and 980 testing voices of 20 from registered 
users and 960 from imposters. Threshold values are 
underlined. 

id 4 5 6 9 10 12 14 15 16 17 UBM

1 -1.19 -1.2 -1.31 -1.25 -1.2 -1.41 -1.52 -1.57 -1.46 -1.52 -1.18

1 -1.08 -1.12 -1.15 -1.08 -1.05 -1.2 -1.36 -1.39 -1.28 -1.32 -1.03

1 -1.24 -1.25 -1.31 -1.32 -1.25 -1.49 -1.59 -1.69 -1.52 -1.59 -1.24

1 -1.27 -1.34 -1.35 -1.36 -1.32 -1.37 -1.46 -1.57 -1.44 -1.46 -1.24

1 -1.25 -1.27 -1.37 -1.31 -1.26 -1.43 -1.55 -1.63 -1.48 -1.53 -1.22

1 -1.15 -1.19 -1.2 -1.19 -1.16 -1.29 -1.45 -1.46 -1.36 -1.43 -1.12

1 -1.11 -1.15 -1.21 -1.16 -1.14 -1.31 -1.44 -1.46 -1.36 -1.42 -1.11

1 -1.15 -1.16 -1.22 -1.21 -1.15 -1.3 -1.43 -1.49 -1.36 -1.46 -1.11

1 -1.09 -1.13 -1.13 -1.15 -1.1 -1.21 -1.38 -1.38 -1.31 -1.37 -1.07

1 -1.13 -1.19 -1.13 -1.19 -1.1 -1.16 -1.3 -1.34 -1.26 -1.3 -1.07

1 -1.22 -1.2 -1.29 -1.26 -1.22 -1.41 -1.53 -1.58 -1.45 -1.54 -1.19

2 -1.57 -1.62 -1.55 -1.77 -1.72 -1.48 -1.54 -1.57 -1.43 -1.56 -1.42

2 -1.57 -1.6 -1.56 -1.8 -1.7 -1.74 -1.63 -1.86 -1.55 -1.6 -1.38

2 -1.59 -1.65 -1.59 -1.81 -1.76 -1.51 -1.6 -1.62 -1.46 -1.55 -1.41

2 -1.49 -1.51 -1.53 -1.72 -1.65 -1.43 -1.45 -1.54 -1.38 -1.44 -1.31

2 -1.3 -1.25 -1.33 -1.43 -1.32 -1.38 -1.3 -1.5 -1.33 -1.31 -1.22

2 -1.47 -1.41 -1.47 -1.66 -1.48 -1.61 -1.62 -1.82 -1.53 -1.67 -1.38

2 -1.48 -1.47 -1.47 -1.69 -1.56 -1.49 -1.54 -1.68 -1.45 -1.55 -1.35

2 -1.26 -1.33 -1.3 -1.3 -1.36 -1.28 -1.24 -1.41 -1.29 -1.23 -1.17

2 -1.3 -1.34 -1.34 -1.45 -1.37 -1.43 -1.34 -1.6 -1.35 -1.37 -1.24

2 -1.55 -1.51 -1.55 -1.69 -1.57 -1.69 -1.7 -1.9 -1.6 -1.72 -1.5

2 -1.63 -1.6 -1.62 -1.8 -1.66 -1.84 -1.79 -2.01 -1.69 -1.81 -1.56

3 -1.18 -1.23 -1.25 -1.26 -1.22 -1.24 -1.27 -1.42 -1.26 -1.24 -1.15

3 -1.17 -1.21 -1.25 -1.24 -1.22 -1.24 -1.25 -1.45 -1.24 -1.22 -1.13

3 -1.18 -1.16 -1.36 -1.38 -1.25 -1.33 -1.33 -1.53 -1.31 -1.33 -1.15

3 -1.24 -1.26 -1.42 -1.46 -1.32 -1.4 -1.39 -1.57 -1.39 -1.4 -1.24

3 -1.28 -1.26 -1.4 -1.47 -1.34 -1.42 -1.45 -1.62 -1.42 -1.43 -1.27

3 -1.41 -1.39 -1.47 -1.49 -1.42 -1.49 -1.5 -1.66 -1.49 -1.46 -1.38

3 -1.13 -1.17 -1.16 -1.18 -1.15 -1.13 -1.19 -1.37 -1.16 -1.16 -1.07

3 -1.32 -1.28 -1.46 -1.49 -1.32 -1.49 -1.48 -1.65 -1.47 -1.5 -1.29

3 -1.2 -1.21 -1.38 -1.38 -1.23 -1.38 -1.38 -1.58 -1.38 -1.4 -1.18

3 -1.17 -1.2 -1.36 -1.39 -1.25 -1.37 -1.37 -1.57 -1.37 -1.35 -1.17

4 -1.06 -1.26 -1.26 -1.29 -1.24 -1.24 -1.3 -1.4 -1.31 -1.3 -1.13

4 -1.02 -1.15 -1.23 -1.22 -1.14 -1.26 -1.32 -1.44 -1.29 -1.34 -1.09

5 -1.38 -1.23 -1.55 -1.51 -1.39 -1.64 -1.67 -1.78 -1.61 -1.64 -1.35

5 -1.25 -1.19 -1.3 -1.38 -1.32 -1.39 -1.48 -1.47 -1.41 -1.48 -1.2

6 -1.26 -1.3 -1.09 -1.25 -1.21 -1.37 -1.45 -1.48 -1.42 -1.45 -1.12

6 -1.18 -1.2 -1.02 -1.15 -1.1 -1.34 -1.45 -1.45 -1.39 -1.43 -1.08



7 -1.14 -1.14 -1.25 -1.25 -1.18 -1.31 -1.29 -1.4 -1.3 -1.3 -1.15

7 -1.1 -1.09 -1.22 -1.21 -1.14 -1.25 -1.25 -1.33 -1.26 -1.26 -1.11

7 -1.13 -1.16 -1.3 -1.28 -1.2 -1.33 -1.32 -1.44 -1.33 -1.34 -1.17

7 -1.12 -1.15 -1.29 -1.26 -1.17 -1.34 -1.36 -1.45 -1.35 -1.34 -1.14

7 -1.16 -1.2 -1.33 -1.31 -1.23 -1.39 -1.42 -1.47 -1.4 -1.4 -1.2

7 -1.17 -1.18 -1.26 -1.29 -1.22 -1.3 -1.33 -1.38 -1.32 -1.31 -1.17

7 -1.06 -1.06 -1.16 -1.17 -1.11 -1.18 -1.13 -1.25 -1.17 -1.16 -1.06

8 -1.4 -1.59 -1.5 -1.62 -1.71 -1.27 -1.29 -1.33 -1.28 -1.23 -1.21

8 -1.47 -1.63 -1.58 -1.7 -1.77 -1.31 -1.38 -1.38 -1.33 -1.31 -1.29

8 -1.45 -1.64 -1.59 -1.73 -1.78 -1.31 -1.34 -1.34 -1.3 -1.29 -1.26

8 -1.27 -1.43 -1.38 -1.45 -1.58 -1.22 -1.19 -1.33 -1.19 -1.14 -1.14

8 -1.33 -1.52 -1.49 -1.51 -1.65 -1.3 -1.21 -1.44 -1.27 -1.16 -1.16

8 -1.45 -1.6 -1.6 -1.74 -1.76 -1.37 -1.34 -1.45 -1.32 -1.3 -1.27

8 -1.35 -1.54 -1.47 -1.57 -1.7 -1.26 -1.24 -1.3 -1.25 -1.2 -1.2

9 -1.26 -1.24 -1.13 -0.99 -1.15 -1.36 -1.47 -1.51 -1.44 -1.48 -1.08

9 -1.16 -1.11 -1.03 -0.65 -0.96 -1.16 -1.33 -1.34 -1.24 -1.34 -0.86

10 -1.32 -1.31 -1.39 -1.39 -1.11 -1.54 -1.65 -1.78 -1.56 -1.6 -1.2

10 -1.35 -1.31 -1.44 -1.39 -1.16 -1.58 -1.67 -1.77 -1.59 -1.61 -1.24

11 -1.3 -1.21 -1.48 -1.49 -1.28 -1.53 -1.58 -1.7 -1.54 -1.54 -1.32

11 -1.26 -1.21 -1.45 -1.48 -1.24 -1.48 -1.5 -1.66 -1.47 -1.48 -1.27

11 -1.33 -1.26 -1.5 -1.53 -1.34 -1.58 -1.58 -1.74 -1.54 -1.58 -1.34

11 -1.26 -1.18 -1.46 -1.47 -1.26 -1.53 -1.53 -1.69 -1.49 -1.51 -1.28

11 -1.35 -1.26 -1.5 -1.58 -1.32 -1.59 -1.56 -1.74 -1.55 -1.57 -1.34

11 -1.35 -1.26 -1.49 -1.57 -1.34 -1.57 -1.52 -1.74 -1.53 -1.57 -1.33

12 -1.48 -1.63 -1.5 -1.63 -1.68 -1.29 -1.47 -1.54 -1.46 -1.39 -1.3

12 -1.22 -1.35 -1.27 -1.35 -1.32 -0.98 -1.22 -1.34 -1.23 -1.2 -0.98

13 -1.66 -1.74 -1.68 -1.89 -1.87 -1.6 -1.55 -1.58 -1.51 -1.51 -1.42

13 -1.57 -1.72 -1.66 -1.73 -1.85 -1.49 -1.42 -1.49 -1.49 -1.38 -1.35

13 -1.43 -1.51 -1.48 -1.57 -1.61 -1.4 -1.32 -1.38 -1.38 -1.34 -1.26

13 -1.49 -1.53 -1.54 -1.68 -1.63 -1.47 -1.4 -1.41 -1.41 -1.43 -1.31

13 -1.57 -1.65 -1.64 -1.77 -1.78 -1.49 -1.44 -1.47 -1.45 -1.43 -1.34

14 -1.45 -1.49 -1.49 -1.7 -1.59 -1.4 -1.22 -1.49 -1.37 -1.38 -1.27

14 -1.39 -1.49 -1.42 -1.59 -1.59 -1.29 -1.18 -1.4 -1.33 -1.28 -1.2

15 -1.43 -1.52 -1.44 -1.59 -1.58 -1.35 -1.34 -1.26 -1.33 -1.34 -1.29

15 -1.39 -1.51 -1.41 -1.53 -1.58 -1.31 -1.32 -1.22 -1.32 -1.31 -1.24

16 -1.32 -1.36 -1.36 -1.59 -1.52 -1.19 -1.17 -1.16 -1 -1.2 -1.05

16 -1.44 -1.5 -1.48 -1.69 -1.63 -1.34 -1.31 -1.3 -1.11 -1.31 -1.16

17 -1.6 -1.8 -1.67 -1.84 -1.87 -1.54 -1.5 -1.59 -1.49 -1.36 -1.36

17 -1.74 -1.95 -1.85 -1.98 -2.02 -1.77 -1.61 -1.89 -1.69 -1.43 -1.47

18 -1.33 -1.4 -1.3 -1.43 -1.49 -1.17 -1.17 -1.12 -1.2 -1.11 -1.08

18 -1.47 -1.59 -1.51 -1.66 -1.69 -1.42 -1.37 -1.37 -1.36 -1.29 -1.25

18 -1.38 -1.41 -1.35 -1.57 -1.52 -1.27 -1.29 -1.22 -1.23 -1.31 -1.2

18 -1.31 -1.33 -1.25 -1.46 -1.38 -1.22 -1.26 -1.18 -1.2 -1.24 -1.14

18 -1.28 -1.27 -1.24 -1.43 -1.37 -1.24 -1.25 -1.19 -1.2 -1.23 -1.11

18 -1.47 -1.56 -1.44 -1.6 -1.63 -1.34 -1.33 -1.34 -1.36 -1.23 -1.21

18 -1.41 -1.46 -1.36 -1.56 -1.56 -1.26 -1.28 -1.2 -1.26 -1.23 -1.19

19 -1.43 -1.67 -1.43 -1.55 -1.73 -1.22 -1.32 -1.38 -1.35 -1.23 -1.14

19 -1.43 -1.66 -1.43 -1.56 -1.68 -1.2 -1.33 -1.39 -1.4 -1.24 -1.17

19 -1.58 -1.9 -1.65 -1.76 -1.95 -1.59 -1.45 -1.79 -1.6 -1.33 -1.27

19 -1.4 -1.61 -1.41 -1.53 -1.61 -1.2 -1.32 -1.42 -1.34 -1.25 -1.14

19 -1.68 -1.96 -1.75 -1.8 -2.04 -1.59 -1.48 -1.84 -1.64 -1.37 -1.35

19 -1.28 -1.49 -1.26 -1.4 -1.51 -1.07 -1.23 -1.24 -1.22 -1.16 -1.06

19 -1.32 -1.52 -1.3 -1.45 -1.53 -1.07 -1.27 -1.24 -1.25 -1.21 -1.1

19 -1.32 -1.54 -1.36 -1.46 -1.52 -1.17 -1.29 -1.43 -1.33 -1.22 -1.13

20 -1.35 -1.38 -1.39 -1.56 -1.47 -1.25 -1.24 -1.21 -1.19 -1.21 -1.13

20 -1.46 -1.5 -1.49 -1.71 -1.66 -1.36 -1.33 -1.32 -1.26 -1.34 -1.21

20 -1.47 -1.46 -1.48 -1.67 -1.59 -1.36 -1.36 -1.33 -1.26 -1.4 -1.26

20 -1.46 -1.51 -1.48 -1.69 -1.63 -1.34 -1.31 -1.3 -1.26 -1.3 -1.18

20 -1.43 -1.47 -1.47 -1.69 -1.59 -1.29 -1.27 -1.29 -1.24 -1.25 -1.16

20 -1.45 -1.45 -1.43 -1.64 -1.58 -1.35 -1.38 -1.34 -1.25 -1.43 -1.23

 
 The minimum score of each testing voice compared with its 

own model is selected as the threshold for a testing voice to be 
accepted or rejected by that identity voice model, as underlined 
in the table 1. Thus all the testing voice from registered users 
will be correctly accepted for each voice model. The 
corresponding verification results for the threshold-based, UBM 

based, and various combinations with the identification-based 
front-ends speaker verification systems are shown in table 2. 
 

Table 2 - Results of various algorithms for the previous 
data 

Method FR FA 
Individual Threshold: 1-20/20 = 0 1-808/960 = 0.158

Identification+Threshold 1-20/20 = 0 1-836/960 = 0.129

UBM 1-20/20 = 0 1-926/960 = 0.035

Identification+UBM 1-20/20 = 0 1-939/960 = 0.022

Identification+Threshold+UBM 1-20/20 = 0 1-950/960 = 0.010

5. Conclusions 

An approach combining the power of three different speaker 
verification methods has been proposed. We show analytically 
that the combined solution is better than the standalone solution. 
Experimentation using a subset of standard NIST speaker 
recognition corpus also provides strong evidence to support that 
conclusion.  

Because the proposed method is based on decision 
fusion, the same analysis can also be applied to the more 
advanced score-space kernel based systems. However 
we expect only a moderate enhancement because the 
complimentary characteristics will less effective when 
the classifier approaching its limit.  
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