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Abstract. In this note we show that reconstruction from magnitudes of frame

coefficients (the so called “phase retrieval problem”) can be performed us-

ing Lipschitz continuous maps. Specifically we show that when the nonlin-
ear analysis map α : H → Rm is injective, with (α(x))k = |〈x, fk〉|2, where

{f1, · · · , fm} is a frame for the Hilbert space H, then there exists a left inverse
map ω : Rm → H that is Lipschitz continuous. Additionally we obtain that

the Lipschitz constant of this inverse map is at most 12 divided by the lower

Lipschitz constant of α.

1. Introduction

Let H be an n-dimensional Hilbert space and F = {f1, f2, · · · , fm} be a span-
ning set for H. Since H has finite dimension, F forms a frame for H, that is, there
exist two positive constants A and B such that

(1.1) A ‖x‖2 ≤
m∑
k=1

|〈x, fk〉|2 ≤ B ‖x‖2 , ∀x ∈ H

In this paper, H can be a real or complex Hilbert space and the result applies
to both cases. On H we consider the equivalent replation x ∼ y if and only if there
is a scalar a of magnitude one, |a| = 1, so that y = ax. Let Ĥ = H/ ∼ denote

the set of equivalence classes. Note that Ĥ \ {0} is equivalent to the cross-product
between a real or complex projective space Pn−1 of dimension n−1 and the positive
semiaxis R+ = (0,∞).

Let α denote the nonlinear map

(1.2) α : H → Rm , α(x) =
(
|〈x, fk〉|2

)
1≤k≤m
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Note that α induces a nonlinear map which is well defined on Ĥ. By abuse of
notation we also denote it by α. The phase retrieval problem (or the phaseless
reconstruction problem) refers to analyzing when α is an injective map, and in this
case to finding ”good” left inverses. The frame F is said to be phase retrievable if
the nonlinear map α is injective. In this paper we assume α is injective (hence F
is phase retrievable).

A continuous map f : (X, dX)→ (Y, dY ), defined between metric spaces X and
Y with distances dX and dY respectively, is said to be Lipschitz continuous with
Lipschitz constant Lip(f) if

(1.3) Lip(f) := sup
x1 6=x2∈X

dY (f(x1), f(x2))

dX(x1, x2)
<∞

Existing literature (e.g. [BW]) establishes that when α is injective, it is also bi-

Lipschitz for metric d1 (the nuclear norm, which is defined in (2.4)) in Ĥ and
Euclidian norm in Rm. As a consequence of these results we obtain that a left
inverse of α is Lipschitz when restricted to the image of Ĥ through α. In this paper
we show that this left inverse admits a Lipschitz continuous extension to the entire
Rm. Surprisingly we obtain the Lipschitz constant of this extension is just a small
factor larger than the minimal Lipschitz constant, a factor that is independent of
the dimension n or the number of frame vectors m.

The Lipschitz properties of α is related to the stability of reconstruction. Con-
sider the noisy model for the reconstruction of a signal x with the measurements

(1.4) y = α(x) + ν

where ν ∈ Rm is the noise. The stability of specific reconstruction methods is
studied in, for instance, [BCMN], [BH] and [CSV]. In general, if we can find
(guaranteed by the result of this paper) a Lipschitz continuous map defined on the

whole Rm, say ω : (Rm, ‖·‖) → (Ĥ, d1), such that ω(α(x)) = x for all x ∈ Ĥ, then

we have a stable reconstruction in the following sense: Let x0 ∈ Ĥ be the original
signal and y1 be the measurement from the noisy model (1.4) with noise ν1. Let
x1 = ω(y1). Then

(1.5) d1(x0, x1) = d1 (ω(α(x0)), ω(y1)) ≤ Lip(ω) · ‖α(x0)− y1‖ = Lip(ω) · ‖ν1‖ .
Moreover, let y1 and y2 be two different measurements of α(x0) from (1.4) with
noise ν1, ν2, respectively. Then we have

(1.6) d1(x1, x2) = d1 (ω(y1), ω(y2)) ≤ Lip(ω) · ‖y1 − y2‖ = Lip(ω) · ‖ν1 − ν2‖ .
Note that in general (1.5) does not imply (1.6).

2. Notations and Statement of Main Results

The nonlinear map α defined by (1.2) naturally induces a linear map between
the space Sym(H) = {T : H → H , T = T ∗} of symmetric operators on H and
Rm:

(2.1) A : Sym(H)→ Rm , A(T ) = (〈Tfk, fk〉)1≤k≤m
Note that α(x) = A(Jx, xK) where

(2.2) Jx, yK =
1

2
(〈·, x〉y + 〈·, y〉x)

denotes the symmetric outer product between vectors x and y.
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The linear map A has first been observed in [BBCE] and it has been exploited
successfully in various papers e.g. [Ba2, CSV, Ba3].

Let Sp,q(H) denote the set of symmetric operators that have at most p strictly
positive eigenvalues and q strictly negative eigenvalues.

In particular S1,0(H) denotes the set of non-negative symmetric operators of
rank at most one:

(2.3) S1,0(H) = {T ∈ Sym(H) s.t. ∃x ∈ H,∀y ∈ H , T (y) = 〈y, x〉x}
In [Ba4] we studied in more depth geometric and analytic properties of this set.

The map α is injective if and only if A restricted to S1,0(H) is injective. On the

space Ĥ we define the matrix norm induced metrics as follows: For every 1 ≤ p ≤ ∞
and x, y ∈ H,

(2.4) dp(x̂, ŷ) = ‖Jx, xK− Jy, yK‖p =

{
(
∑n
k=1(σk)p)

1/p
for 1 ≤ p <∞

max1≤k≤n σk for p =∞
where (σk)1≤k≤n are the singular values of the matrix Jx, xK − Jy, yK, which is of
rank at most 2. In particular, for p = 1, d1 corresponds to the nuclear norm ‖·‖1 in
Sym(H) (the sum of singular values); for p = ∞, d∞ corresponds to the operator
norm ‖·‖∞ in Sym(H) (the largest singular value). In the following parts, when
no subscript is used, ‖·‖ = ‖·‖2.

In previous papers [Ba4, BW] we showed a result that is equivalent to the
following theorem:

Theorem 2.1. If F is phase retrievable, then there exist constants a0, b0 > 0
such that for every x, y ∈ H,

(2.5)
√
a0d1(x, y) ≤ ‖α(x)− α(y)‖ ≤

√
b0d1(x, y)

i.e. α is bi-Lipschitz between (Ĥ, d1) and (Rm, ‖·‖).

Consequently, the inverse map defined on the range of α from metric space
(α(Ĥ), ‖·‖) to (Ĥ, d1):

(2.6) ω̃ : α(Ĥ) ⊂ Rm → Ĥ , ω̃(c) = x if α(x) = c

is Lipschitz and its Lipschitz constant is bounded by 1√
a0

.

Now we state the main result of this paper:

Theorem 2.2. Let F = {f1, · · · , fm} be a phase retrievable frame for the n-

dimensional Hilbert space H, and let α : Ĥ → Rm denote the injective nonlinear
analysis map α(x) = (|〈x, fk〉|2)1≤k≤m. Then there exists a Lipschitz continuous

function ω : Rm → Ĥ such that ω(α(x)) = x for all x ∈ Ĥ. ω has a Lipschitz

constant Lip(ω) between (Rm, ‖·‖2) and (Ĥ, d1) bounded by

(2.7) Lip(ω) ≤ 12
√
a0

The proof of Theorem 2.2, presented in the next section, requires construction
of a special Lipschitz map. We believe this particular result is interesting in itself
and may be used in other constructions. Due to its importance we state it here:

Lemma 2.3. Consider the spectral decomposition of any self-adjoint operator

in Sym(H), A =
∑d
k=1 λm(k)Pk, where λ1 ≥ λ2 ≥ · · · ≥ λn are the n eigenvalues

including multiplicities, and P1,...,Pd are the orthogonal projections associated to
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the d distinct eigenvalues. Additionally, m(1) = 1 and m(k + 1) = m(k) + r(k),
where r(k) = rank(Pk) is the multiplicity of eigenvalue λm(k). Then the map

(2.8) π : Sym(H)→ S1,0(H) , π(A) = (λ1 − λ2)P1

satisfies the following two properties:

(1) π is Lipschitz continuous from (Sym(H), ‖·‖∞) to (S1,0(H), ‖·‖∞) with
Lipschitz constant less than or equal to 6;

(2) π(A) = A for all A ∈ S1,0(H).

The estimates of Theorem 2.2 and Lemma 2.3 are not optimal. In a separate
publication [BZ] we improve it and extend the estimates to other metrics.

3. Proof of Results

The proof of Theorem 2.2 requires the Kirszbraun Theorem (see, e.g. [WW],
Ch.10-11). Kirszbraun Theorem applies when two metric spaces have the following
property:

Definition 3.1 (Kirszbraun Property (K)). Let X and Y be two metric spaces
with metric dx and dy respectively. (X,Y ) is said to have Property (K) if for
any pair of families of closed balls {B(xi, ri) : i ∈ I}, {B(yi, ri) : i ∈ I}, such
that dy(yi, yj) ≤ dx(xi, xj) for each i, j ∈ I, it holds that

⋂
i∈I B(xi, ri) 6= ∅ ⇒⋂

i∈I B(yi, ri) 6= ∅.

Kirszbraun Theorem states the following:

Theorem 3.2 (Kirszbraun Theorem). Let X and Y be two metric spaces and
(X,Y ) has Property (K). Suppose U is a subset of X and f : U → Y is a Lipschitz
map. Then there exists a Lipschitz map F : X → Y which extends f to X and
Lip(F ) = Lip(f). In particular, (X,Y ) has Property (K) if X and Y are Hilbert
spaces and dX , dY are the correspondingly induced metrics.

Note that we cannot use the Kirszbraun Theorem directly to extend ω̃. Specif-
ically, our pair of spaces (Rm, Ĥ) does not satisfy the Kirszbraun Property. We
give the following counterexample.

Example 3.3. Let X = Rm for any m ∈ N and Y = Ĥ with H = C2. We want
to show that (X,Y ) does not have Property (K). Let ỹ1 = (1, 0) and ỹ2 = (0,

√
3)

be representitives of y1, y2 ∈ Y , respectively. Then d1(y1, y2) = 4. Pick any two
points x1, x2 in X with ‖x1 − x2‖ = 4. Then B(x1, 2) and B(x2, 2) intersect at
x3 = (x1 +x2)/2 ∈ X. It suffices to show that the closed balls B(y1, 2) and B(y2, 2)
have no intersection in H. Assume on the contrary that the two balls intersect at
y3, then pick a representive of y3, say ỹ3 = (a, b) where a, b ∈ C. It can be computed
that

(3.1) d1(y1, y3) = |a|4 + |b|4 − 2|a|2 + 2|b|2 + 2|a|2|b|2 + 1

and

(3.2) d1(y2, y3) = |a|4 + |b|4 + 6|a|2 − 6|b|2 + 2|a|2|b|2 + 9

Set d1(y1, y3) = d1(y2, y3) = 2. Take the difference of the right hand side of (3.1)
and (3.2), we have |b|2 − |a|2 = 1 and thus |b|2 ≥ 1. However, the right hand side
of (3.1) can be rewritten as (|a|2 + |b|2 − 1)2 + 4|b|2, so d1(y1, y3) = 2 would imply
that |b|2 ≤ 1/2. This is a contradiction.
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We start with the proof of Lemma 2.3.

Proof of Lemma 2.3. We prove (1) only. (2) follows directly from the ex-
pression of π.

Let A, B ∈ Sym(H) where A =
∑d
k=1 λm(k)Pk is the spectral decomposition

as stated in the lemma and B =
∑d′

k′=1 µm(k′)Qk′ is a decomposition in the same
manner. We now show that

(3.3) ‖π(A)− π(B)‖∞ ≤ 6 ‖A−B‖∞
Assume λ1 − λ2 ≤ µ1 − µ2. Otherwise switch the notations for A and B. If

µ1 − µ2 = 0 then π(A) = π(B) = 0 and the inequality (3.3) is satisfied. Assume
now µ1 − µ2 > 0. Thus Q1 is of rank 1 and therefore ‖Q1‖∞ = 1.

First note thats

π(A)− π(B) = (λ1 − λ2)P1 − (µ1 − µ2)Q1

= (λ1 − λ2)(P1 −Q1) + (λ1 − µ1 − (λ2 − µ2))Q1
(3.4)

Here ‖P1‖∞ = ‖Q1‖∞ = 1. Therefore we have ‖P1 −Q1‖∞ ≤ 1 since P1, Q1

are both positive semidefinite.
Also, by Weyl’s inequality (see [Bh] III.2) we have |λi − µi| ≤ ‖A−B‖∞ for

each i. Apply this to i = 1, 2 we get |λ1−µ1− (λ2−µ2)| ≤ |λ1−µ1|+ |λ2−µ2| ≤
2 ‖A−B‖∞. Thus |λ1 − µ1|+ |λ2 − µ2| ≤ 2 ‖A−B‖∞.

Let g := λ1 − λ2, δ := ‖A−B‖∞, then apply the above inequality to (3.4) we
get

(3.5) ‖π(A)− π(B)‖∞ ≤ g ‖P1 −Q1‖∞ + 2δ ≤ g + 2δ

If 0 ≤ g ≤ 4δ, then ‖π(A)− π(B)‖∞ ≤ 6δ and we are done. Now we consider
the case where g > 4δ. In the complex plane, let γ = γ(t) be the (directed)
circle centered at λ1 with radius g/2. Since δ < g/4 we have |λ1 − µ1| < g/4 and
|λ2 − µ2| < g/4. Therefore the contour encloses µ1 but not µ2.

Using holomorphic calculus, we can put

(3.6) P1 = − 1

2πi

∮
γ

RA dz
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and

(3.7) Q1 = − 1

2πi

∮
γ

RB dz

where RA = (A− zI)−1 and RB = (B − zI)−1.
Now we have

P1 −Q1 =
1

2πi

∮
γ

(RB −RA) dz

=
1

2πi

∮
γ

RA (B −A)RB dz

(3.8)

Thus

‖P1 −Q1‖∞ ≤
1

2π
· 2π · g

2
·max

z
‖A− zI‖∞ ‖B −A‖∞ ‖B − zI‖∞

=
gδ

2
·max

z
max

{
1

|λ1 − z|
,

1

|λ2 − z|

}
·

max
z

max

{
1

|µ1 − z|
,

1

|µ2 − z|

}
=
gδ

2
· 2

g
· 4

g

=
4δ

g

(3.9)

Thus by the first inequality in (3.5) we have

(3.10) ‖π(A)− π(B)‖∞ ≤ 4δ + 2δ = 6δ

Therefore, we have proved (3.3).
�

Remark 3.4. Using the integration contour from [ZB], one can derive a slightly
stronger bound. We plan to present this result in [BZ].

Remark 3.5. Numerical experiments seem to suggest that the optimal Lips-
chitz constant in Lemma 2.3 is 2.

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We construct a Lipschitz map ω : (Rm, ‖·‖) →
(Ĥ, d1) such that ω(α(x)) = x for all x ∈ Ĥ and Lip(ω) ≤ 12/

√
a0.

Let M = α(Ĥ) ⊂ Rm. By hypothesis, there is a map ω̃1 : M → Ĥ that is

Lipschitz continuous and satisfies ω̃1(α(x)) = x for all x ∈ Ĥ. Additionally, the

Lipschitz bound between (M, ‖·‖) (that is, M with Euclidian distance) and (Ĥ, d1)
is given by 1/

√
a0.

First we change the metric on Ĥ from d1 to d2 and embed isometrically Ĥ into
Sym(H) with Frobenius norm (i.e. Euclidian metric):

(3.11) (M, ‖·‖) ω̃1−→ (Ĥ, d1)
i1,2−→ (Ĥ, d2)

κ−→ (Sym(H), ‖·‖Fr)

where i1,2(x) = x is the identity of Ĥ and κ is the isometry given by

(3.12) κ : Ĥ → S1,0(H), x 7→ Jx, xK
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Obviously we have Lip(i1,2) = 1 and Lip(κ) = 1. Thus we obtain a map
ω̃2 : (M, ‖·‖)→ (Sym(H), ‖·‖Fr) of Lipschitz constant

(3.13) Lip(ω̃2) ≤ Lip(ω̃1)Lip(i1,2)Lip(κ) =
1
√
a0

Kirszbraun Theorem (Theorem 3.2) extends isometrically ω̃2 from M to the en-
tire Rm with Euclidian metric ‖·‖. Thus we obtain a Lipschitz map ω2 : (Rm, ‖·‖)→
(Sym(H), ‖·‖Fr) of Lipschitz constant Lip(ω2) = Lip(ω̃2) ≤ 1/

√
a0 such that

ω2(α(x)) = Jx, xK for all x ∈ Ĥ.
Now we consider the following maps:

(Rm, ‖·‖) ω2−→ (Sym(H), ‖·‖Fr)
I2,∞−→ (Sym(H), ‖·‖∞)
π−→ (S1,0(H), ‖·‖∞)

κ−1

−→ (Ĥ, d∞)

i∞,1−→ (Ĥ, d1)

(3.14)

where I2,∞ and i∞,1 are identity maps that change the metrics. The map ω is
defined by

(3.15) ω : (Rm, ‖·‖)→ (Ĥ, d1), ω = i∞,1 · κ−1 · π · I2,∞ · ω2

The Lipschitz constant is bounded by

Lip(ω) ≤ Lip(ω2)Lip(I2,∞)Lip(π)Lip(κ−1)Lip(i2,1)

≤ 1
√
a0
· 1 · 6 · 1 · 2

=
12
√
a0

(3.16)

Hence we obtained (2.7).
�
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