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Objectives

• Improve the expressively of normalizing flow to
model data distributions on (finite sets of)
differentiable manifolds. Handle arbitrary
topology of the data space, and different
dimensionality than the latent space.

• Provide a statistical framework for normalizing
flows as manifold chart maps and an trainable
DNN model for the same.

• Empirical validation of improved density
estimation and sample generation, scaling to
high dimensional image data (MNIST).

Introduction

Unlike other generative models, normalizing flows
(NFs) have the advantage of allowing for exact den-
sity estimation [1]. Unfortunately, this benefit comes
at the cost of requiring the flow to be a diffeomor-
phism (a.e.), restricting the applicability of NFs to
data manifolds that are diffeomorphic to the latent
space Z . In particular, the data must have the same
dimension as Z if the NF is to perform well. We
overcome these limitations by viewing NFs as chart
maps of the data manifold, thus allowing for data
manifolds with more complex topology. Our main
contributions are:

• A scalable method of learning good charts using a
vector quantized auto encoder.

• A statistical and scalable (to high dimensions)
framework for combining normalizing flows from
different charts.

(a) Real Data (b) Classic Flow (c) VQ-Flow

Figure: Augmentation of our framework (c) enables a classic
flow (b) to better model the discontinuities in the data
manifold through a learned atlas of charts(shaded region).

The chart regions U1 . . . , UK

A VQ-AE learns an encoder map E : X → V , a
decoder map D : V → X , and a collection of “chart
centers” Q = ¶vk♢

K
k=1 ⊂ V that minimize the error

L(D(argminv∈Q♣♣v − E(x)♣♣2), x). Once D, E, and
Q are learned we compute dk(x) = ♣♣E(x) − vk♣♣2
for k = 1, . . . K. We would like charts to overlap,
but also to be sparse in the sense that no x has
too many charts. Fix ϵ > 0, let d̃1 ≤ · · · ≤ d̃K

be the sorted permutation of d1, . . . , dK then define
Uk = ¶x : ♣♣E(X) − vk♣♣2 < (1 + ϵ)d̃m(x)♢.
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Learned Quantized Centers

Figure: Learning quantized centers on the low dimensional data
manifold using a vector quantized auto-encoder.

Figure: Normalizing flows as chart maps.

The chart maps f1, . . . , fk

We model gk : Z → Uk as L layered invertible NFs.
To handle dimensionality change, we post-compose
with a conformal dimension raising map [2] so that
gk = ck ◦ gL

k ◦ · · · ◦ g1
k and fk = f 1

k ◦ · · · ◦ fL
k ◦ c

†
k. In

practice, we reduce the number of parameters of our
model by restricting each gl

k (and f l
k) to depend on k

only through the value of the encoded chart center
vk. g1, . . . , gk are learned via gradient descent on
the objective function (2).

• Sampling: z and k are independent, so sample
z ∼ q(z) and k ∼ p(k) and then compute
x = gk(z).

• Inference: One can perform a stochastic inference
via sampling k ∼ p(k♣x) and computing
z = fk(x), however if deterministic inference is
preferred one may instead use
z = Ek∼p(k♣x)[fk(x)] =

∑
k:x∈Uk

p(k♣x)fk(x).

...
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Figure: Learning the data distribution using a family of
normalizing flows conditioned on the quantized centers.

Exact Density Evaluation

Denote by Z the latent space, X the data space, and M ⊂ X the data manifold. Let (U1)
K
k=1 be such

that M ⊂
⋃K

k=1 Uk and let Vk = Uk ∩ M. Assume there exists Dk ⊂ Z so that Vk = gk(Dk) for some
immersion gk : Dk → Uk with inverse fk : Vk → Dk. If x is a r.v. supported on M, z is a r.v. in Z , k is
a discrete random variable and x, z, k have joint distribution

p(x, z, k) = δ(x − gk(z))q(z)pk (1)

Then

p(x) =
∑

k:x∈Vk

pk♣ det[Jfk(x)Jfk(x)T ]♣
1
2q(fk(x)) (2)
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Figure: Qualitative visualization of the samples generated by a
classical flow - RealNVP (Middle Row) and its VQ-counterpart
(Bottom Row) trained on Toy 3D data distributions (Top
Row).

(a) RealNVP (b) MAF

Figure: FID scores (lower the better) across the training of (a)
RealNVP and (b) MAF on the MNIST dataset. The shaded
region represents the standard deviation over 3 trials.

Future Work

Our framework is well suited to high-dimensional
datasets (such as natural images) that obey the man-
ifold hypothesis, an avenue we hope to explore in the
sequel.
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