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2 RADU BALAN

1. INTRODUCTION

Suppose H is an infinite dimensional separable Hilbert space. A theorem due to
Paley-Wiener [PaWi34] states the following: let {e; }, . be an orthonormal basis of
H and let {fi}, . be a family of vectors in H. If there exists a constant A € [0,1)
such that

n

(1.1) 1D eilei = F) NS AN cie 1= A leal)?
i=1 i=1

i=1

for all n, ey, ¢a,. .., cn, then {f; }ien is a Riesz basis in H and a frame with bounds
(1—=X)%, (14+X)2. An extension of this theorem was given by Christensen in [Chr95]
to Hilbert frames and by Christensen and Heil in [ChHe96] to Banach frames.

Duffin and Eachus ([DuSc52]) proposed a converse of the above result by proving
that every Riesz basis, after a proper scaling, is close to an orthonormal basis in
the sense of (1.1). We are going to extend this result to Hilbert frames and to prove
some results about quadratic closeness and distance between two frames.

Let T be a countable index set. A family of vectors F = {fi};c; in H is called a
(Hilbert) frame if there exist two real numbers 0 < A < B < oo such that for any
z € H we have:

(1.2) AllalP <Y I<a fi> < B 2|
i€l
If A = B we call the frame tight. The largest constant A and respectively the

smallest constant B that satisfy (1.2) are called the (optimal) frame bounds.
To a frame F we associate several objects. Consider the operator:

T:H =PI, T(x) = (< x, fi >)ier,

called the analysis operator associated to F (see [Ron96] for terminology). From
(1.2) we get that it is a bounded operator with norm || T'||= v/B and its range is
closed. The adjoint of T is given by:

TP = H, Te=Y afi,
i€l
and 1s called the synthesis operator. With these two operators we construct the
frame operator by

S:H—H,S=T"TorS) =Y <uzfi>Ff
i€l
The condition (1.2) can then be read as: A-1 <S5 < B -1 and therefore the frame
bounds are: B =|| S ||, A =|| S~'||7" (for details, we refer the reader to [DuSc52]).
To every frame F one can associate two special frames: one is called the (stan-

dard) dual frame and the other (less frequently used) is called the associated tight
frame (see relation (2.12) in [AAG93]). The (standard) dual frame is defined by:

(1.3) F=Afiliex, i=S"'F

and has a lot of useful properties. A few of them are the following:

(1) F is a frame with frame bounds %, %.
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(2) If T is the analysis operator associated to F then T = T'S~! and the following
resolutions of identity (or reconstruction formulae) hold:

lzf*T:T*Toraj:Z<x,fi>ﬁ:2<x,fi>fi
i€l i€l

(3) In (2(T), T and T have the same range (E = RanT = RanT) and P =
TT* = TT* is the orthogonal projector onto E.

(4) For any ¢ € {*(I) we can consider the set of sequences d € {*(I) with the
same image as c, i.e. T"¢ = T*d; the minimum {?>-norm in this set is achieved by
the sequence ¢* = Pc € F.

The associated tight frame is defined by:

(14) f# = {fi#}iel ) fz# = S_l/zfi

A few properties of the associated tight frame that can be simply checked are the
following:

(1) The associated tight frame is a tight frame with frame bound 1.

(2) If T# is the analysis operator associated to F# then T# = TS~1/2; its range
coincides with £ = Ran T, and the orthogonal projector onto E, P, is also equal
to T#(T#)*.

We shall come back to this associated tight frame in section 3.

So far, we have just listed properties of one frame and some derived frames.
In this paper we shall discuss mainly the relations between two frames. Let F =
{fiticr and G = {gi};¢1 be two frames in H. We define the following notions:

e If () is an invertible bounded operator ) : H — H and if g; = @ f;, then we
say that F and G are @Q-equivalent.
e We say they are unitarily equivalent if they are @Q-equivalent for a unitary
operator ().
o If Q is a bounded operator @ : H — H (not necessarily invertible) and
gi = Qf;, then we say F is @Q-partial equivalent with G.
e We say F is partial isometric equivalent with G if there exists a partial isom-
etry J : H — H such that ¢; = Jf; (then J should satisfy JJ* = 1 since
¢i € Ran J and G is a complete set in H).
The last two relations (Q-partial equivalent and partial isometric equivalent) are
not equivalency relations, because they are not symmetric.
We say that a frame G = {g; },.y is (quadratically) close to a frame F = {f;}
if there exists a positive number A > 0 such that:

(1.5) 1D eilgi = F) IS AN DY il

i€l i€l
for any ¢ = (¢;)ier € I*(I) (see [You80]). The infimum of such A’s for which (1.5)
holds for any ¢ € lZ(I) will be called the closeness bound of the frame G to the
frame F and denoted by ¢(G, F).

The closeness relation is not an equivalency relation (it is transitive, but not
reflexive in general). However, if G is quadratically close to F with a closeness
bound less than 1, then F is also quadratically close to G but the closeness bound
is different, in general. Indeed, from (1.5) it follows that:

A
1D " eilgi — £i) lI< T 1D cigi |

i€l i€l

i€l
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The closeness bound can be related to a relative operator bound used in per-
turbation theory (see [Kato76]). More specifically, if 79, T denote the analysis
operators associated respectively to the frames G and F, then ¢(G, F) is the (77)*-
bound of (T9)* — (T¥)* (in the terminology of Kato).

The next step is to correct the nonreflexivity of the closeness relation. We say
that two frames F = {fi};c; and G = {gi };c; are near if F is close to G and G is
close to F. It is fairly easy to check that this is an equivalency relation. In this
case we define the predistance between F and G, denoted d°(F,G) as the maximum
between the two closeness bounds:

(1.6) d°(F,G) = max(c¢(F,G), c(G, F))

It is easy to prove that d° is positive and symmetric, but does not satisfy the
triangle inequality. This inconvenience can be removed if we define the (quadratic)
distance between F and G by:

(1.7) d(F,G) = log(d®(F,G) + 1)

Then, as we shall see later (Theorem 2.7), this is a veritable distance (a metric) on
the set of frames which are near to one another.

Since the nearness relation is an equivalency relation, we can partition the set
of all frames on H, denoted F(H), into disjoint equivalent classes, indexed by an
index set A:

(1.8) FH) = &

with the following properties:
EaNEg=0, fora#p

VF,G € Eu,d(F,G) < 00 and VF € £,,G € E5 with a £ 3, d(F,G) = o

Let 7 denote the index projection: 7 : F(H) = A with F - #n(F) = aif F € &,.
We shall prove that the partition (1.8) corresponds to the nondisjoint partition
of I2(I) into closed infinite dimensional subspaces. Moreover, the two equivalency
relations introduced before are identical (i.e. two frames are near if and only if they
are Q-equivalent) as we shall prove later.

For a frame G we denote by 7 the set of tight frames which are quadratically
close to G and by T2 the set of tight frames such that G is close to them:

(1.9) T = {F ={fi}ic1 | F is a tight frame and ¢(G, F) < 4o0}

(1.10) T?={F= {fi}ic1|F is a tight frame and ¢(F,G) < +oo}

Let d' : 7' = Ry, d?: T2 — R, denote the map from each F to the associated
closeness bound, i.e. d'(F) = ¢(G,F) and d*(F) = ¢(F,G). If G is a tight frame
itself then G € 7' N 72 and mind' = mind? = 0.

Consider now the intersection between these two sets:

(1.11)
T=T"0T>={F ={fi}ier | F is a tight frame and d(F,G) < +00} C €16

In section 3 we will be looking for the minima of the functions d', d and dl-.
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2. GEOMETRY OF HILBERT FRAMES

In this section we are mainly concerned with the relations introduced before.
We shall prove that Q-equivalence is the same as nearness (in other words, two
frames are Q-equivalent if and only if they are near). The following lemmas are
fundamental for all constructions and results in this paper:

Lemma 2.1. Consider F1 = {f}'},c; and Fo = {f}},c1 two tight frames in H
with frame bounds 1. Denote by Ty and Ty respectively their analysis operators.
Then:

1) RanT> C Ran'Ty if and only if F1 and Fo are partial isometric equivalent;
moreover, if J is the corresponding partial isometry, then Ker J ~ RanTi/Ran T,
more specific: Ker J =TF(Ran Ty N (RanTy)*t);

2) Ran'Ty = RanTs if and only if F1 and Fs are unitarily equivalent.

Proof

1. Suppose F; and Fs are partial isometric equivalent. Then f? = Jf? and
Ty = Ty J* for some partial isometry J. Obviously, RanTy C RanTi. Now, recall
that 77 and T3 are isometries from I onto their ranges (since F; and Fy are
tight frames with bound 1). Therefore they preserve the scalar product and linear

independency. Thus:

RanTy = Ti(Ran J* @ Ker J) =TV J(H) @ Ti(Ker J) = RanT, @ Ty (Ker J)
and Ty (Ker J) is the orthogonal complement of Ran T into RanTy. On the other
hand T} |gan 7, i8 the inverse of Ty : H — Ran Ty and thus Ker J = T} (Ran Ty N
(Ran Ty)*1) fixing canonically the isometric isomorphism Ker J ~ RanTy/Ran Ts.

Conversely, suppose Ran Ty C RanTi. Then, the two projectors are P, = ThT7

onto Ran Ty and P» = TyT5 onto Ran Ty and we have PyTy = T5. Now, consider
J:H — H,J="1T5T) which acts in the following way:

J (%) :Z < fi > f}
i€l
We have:
JI' =TT =T, AT, =TT, =1
We want to prove now that sz = ijl for all j. We have, for fixed j,

T ==Y (<UL > =< [ 1> =T
i€l
where ¢ = {¢; }ier, ¢ =< j”jl,fi1 > — < sz, J? >. On the other hand:

0=f} = <Sfi>f=) 00y <fjfi >)f =T7d
i€l i€l
where a/ = {a‘g bien a‘g =d;;— < fjl, f} > and §;; is the Kronecker symbol. Similar
0= T5b/ with b = {b};cq, bl = 0ij— < f7,f? >. Thus @/ € Ker Ty and b/ €
KerTy. But Ker Ty = (RanTy)t C (RanTy)t = Ker Ty, Therefore a/ € Ker Ty
and then ¢/ = a/ — b/ € Ker Ty which means T5¢/ = 0 or sz = ijl. Moreover,
To = T1J* and, as we have proved before, Ker J = Ty (Ran Ty N (Ran Tz)J‘).

2. The conclusion comes from point 1: the partial isometry will have a zero
kernel (KerJ = {0}) and therefore it is a unitary operator (recall that the range
of J should be H).

This ends the proof of the lemma. O
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Lemma 2.2. Consider Fy = {f}'},c; and Fy = {[?};c; two frames in H. Let us
denote by T1 and Ts respectively, their analysis operators. Then:

1) RanTy C Ran'Ty if and only if F1 and Fo are Q-partial equivalent for some
bounded operator Q; furthermore, Ker Q =Ty (Ran Ty N (RanTy)*t).

2) RanTy = RanTs if and only if F1 and Fy are Q-equivalent, for some invert-
wble operator Q.

Proof

Let us denote by S; = 17171, So = 13515 the frame operators.

1. Suppose RanT, C RanT,. We have that F; is Q-equivalent with F;#
(fH# = Sl_l/zfil); F1# is J-partial equivalent with F5# from Lemma 2.1, where
J = (Tz#)*Tl# is a partial isometry; and Fo# is Q-equivalent with F, with Q =
S;/z (f? = S;/z(fiz)#). By composing , we get F; is Q-partial equivalent with
Fovia @ = S;/szl_l/z. Furthermore, since S; and S; are invertible, Ker @) =
S Ker J = Ty (Ran Ty N (Ran Ty)4).

Conversely, if F1 1s Q-partial equivalent with F5 and @ is the bounded operator
relating Fy to Fo, then T = T1Q* and obvious RanT> C Ranli. On the other
hand, since TY¥7T7 = Sy is invertible, Q) = TZ*Tle1 and then F1%# is J-partial
equivalent with Fo# with J = 52—1/2625%/2. We have:

JJr = 8;17Qs P51 Qrsy P = 57 Py Py sy

where P, = TlSl_lTl* is the orthogonal projection onto RanTi. But RanT: C
RanTy, hence PyTy = T5. Thus: JJ* = S;l/sz*TzSZ_l/z = 1, proving that J is
a partial isometry. Now we apply the conclusion of Lemma 2.1 and obtain that
KerJ = (Tl#)*(Ran Ty N (RanTy)*). Substituting this into Ker Q = Si/zKer J
we obtain the result.

2. The statement is obtained from 1), by observing that Ker @ = {0}; since we
also know that Ran @ = H, @) is therefore invertible with bounded inverse. O

We now present the connection between the closeness relation and partial equiv-
alency.

Lemma 2.3. Consider F1 = {f}'};c; and Fo = {f}},c1 two frames in H. Let
us denote by 11 and Ty, respectively, their analysis operators. Then F1 is close
to Fo (ie. ¢(F1,Fa) < o) if and only if Fo is Q-partial equivalent with Fy for
some bounded operator Q@ and therefore RanTo C RanTy. Moreover ¢(Fq, Fa) =||
Q-1]

Proof

=

Suppose F; is close to Fa. Then || Zielci(fil — AL A Zielcifiz || for
A =c(F1,F2). If ¢ = {ei}ier € Ker Ty, then necessarely ¢ € Ker T;". Therefore
KerTy C Ker Ty or RanTy = (Ker T7)t C (KerT3)t = RanTy. Now, applying
Lemma 2.2 we get that Fo is Q-partial equivalent with F;. Then f} = Qf? and if
we denote v =", 1 ¢; f# we have:

1(Q@=De[[<Allv]l

The smallest A > 0 that satisfies the above inequality for any v € H is || @ — 1 ||.
Therefore ¢(F1, Fa) =] Q — 1|
=

i€l
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Suppose F» is Q-partial equivalent with F;. Then, it is easy to check that
e(F1,F2) =|| @ — 1| and then F; is close to Fy. O

As a consequence of this lemma, we obtain the following result:

Theorem 2.4. Let Fi and F» be two frames. Then they are near if and only
if they are Q-equivalent for some invertible operator Q). Moreover, d°(Fq, Fa) =

max(|| Q = L[ 1-=Q7" ). ©

Applying this theorem to the set 7 defined in (1.11) we obtain the following
corollary:

Corollary 2.5. Consider a frame G = {gi}z’el wm H and consider also the set T
defined by (1.11). Then T is parametrized in the following way:

T={F={fiticr | fi = ongZ# where o« > 0 and U is unitary}

Proof

Indeed, let & > 0 and U unitary. Then, by computing its frame operator one
can easily check that F = {fi},cy, fi = ongZ# is a tight frame with bound o?.

Conversely, suppose F = {fi}z’el € 7. Then, from Theorem 2.4 we obtain

fi= le# for some invertible (). We compute its frame operator:
T =N < 5> =00 <o >0 = Q@
i€l i€l

Therefore QQ* = A - 1 which means that ﬁQ is unitary. Thus Q = VAU for
some unitary U. O

The following result makes a connection between the extension of the Paley and
Wiener theorem given by Christensen in [Chr95] and the relations introduced so
far:

Theorem 2.6. Let F = {fi};c; be a frame in H and G = {g;}
in H. Suppose there exists A € [0,1) such that

1Y eilgi = F) NS AD el

i€l i€l

i1 be a set of vectors

for any n € N and cy,co,... in C. Then G is a frame in H and:

1) G is Q-equivalent with F;

2) If T7 and T9 are the analysis operators associated respectively to F and G,
then RanT/ = RanT9;

3) (G, F) <A< 1 and d°(G,F) < co.

Proof

The conclusion that G is a frame follows from a stability result proved by
Christensen in [Chr95]. As we have checked before, from ¢(G,F) < 1 we get
co(F,G) < ﬁ < 0o. Therefore F and G are near and we can apply Theorem 2.4
and complete the proof. O

Theorem 2.4 allows us to partition the set of all frames on I, denoted F(H),
into equivalent classes, as follows:

FH) = &

where &, C F(H) is a set of frames such that any F,G € &,, F is Q-equivalent
with G or, equivalent, F is near to G. Therefore, for each index a € A, the function
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d° &y x &y — R, is well-defined and finite. We want to prove now that the
function:

d: &y x Ey— Ry , d(F,G) = log(1 + d°(F,G))

1s a distance on each class &,.

Theorem 2.7. The function d defined above s a distance on &,. Moreover, for

any F € Eq and G € F(H), if d(F,G) < oo then G € &,.

Proof

The second part of the statement is immediate: if d(F,G) is finite so is d°(F, G);
hence F is close to G and therefore they belong to the same class. To prove that
d is a distance we need to check only the triangle inequality. Let F G H € &,.
Then there exist ) and R invertible bounded operators on H such that g; = Qf;,
h; = Rg; and therefore h; = RQf;. We have:

d(F,G) = log(1+ max(|| Q = 1|, | Q™" = 1))
d(G,#) = log(1 + max(|| R — 1 ||| R~" = 11]))
d(F,H) =log(1 + max(|| RQ - 1],]| QT'R™" — 1]]))

and:
| RQ-1 = (R-)(Q@-D)+R+Q=2 || <[ R-1|[ - [| @-1 [+ || R-L ||+ [ @1 [|=
=(IR=1[+)(lQ@—-1][+1) -1

Hence:
log(|| RQ — 1| +1) < log(]| R— 1| +1) +log(|] @ — L[| +1)
Similar for || @71 R™! — 1 || and therefore d(F, H) < d(F,G) +d(G,H). O

The next step is to relate the partition (1.8) with the set of infinite dimensional
closed subspaces of [2(I). We suppose H is infinite dimensional and I is countable.
Otherwise the following result still holds providing we replace “infinite dimensional
closed subspaces” by “subspaces of dimension equal with the dimension of H”.

Let us denote by S(I*(I)) the set of all infinite dimensional closed subspaces of
[*(I). Then Lemma 2.2 and Theorem 2.4 assert that F(H) is mapped into S(I*(I))
by:

(2.1) it F(H) = S(I*() , i(£a) = Ran'T

where 7' is the analysis operator associated to any frame F € &,. The natural
question that can be asked is whether ¢ 1s surjective, i.e. if for any closed infinite
dimensional subspace of {?(I) we can find a corresponding frame in F(H). The
answer is yes as the following theorem proves (see Christensen in [Chr93], Aldroubi
in [Ald94] or Holub in [Hol94] for this type of argument):

Theorem 2.8. For any infinite dimensional closed subspace E of I*(1) there ewists
a frame F € F(H) (and therefore a class £,) such that i(F) = F (in other words,
RanT = E with T the analysis operator associated to F). Therefore i, considered
form the set of classes £, into S(I*(1)), is a bijective mapping.

Proof

Let E C I*(I) be an infinite dimensional closed subspace. Choose an orthonormal
basis {d;}ier in I and a basis {e;};c; in H (recall H is infinite dimensional and
I countable). Let p; : {*(I) — C be the canonical projection, p;(¢) = ¢;, where
c= {Cj}jel’ i € Iand P :[*(I) — C be the canonical projection onto E. Let us
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denote by {d;},.; the canonical basis in [*(I), i.e. §; = {dy; }ier- Then it is known
(see [Hol94]) that {Pd; }, .y is a tight frame with bound 1in ¥ (and any tight frame
indexed by I with bound 1 in E is of this form, i.e. the orthogonal projection of
some orthonormal basis of {?(I)) since:

Y <e,Psi>Ps=PY <Pcd>0=Pc=c, VcEE

i€l i€l
We define a tight frame with bound 1 in H in the following way:

fi= Z < P(Si,dj >e5 = Z < (5i,dj >e; = Zpi(dj)ej
Jel Jel Ji

It is easy to prove that f;’s are well defined, since || fZ||2 =D jerl < Péi,dj >
|2 =|| P&i|]> < co. Let T be the analysis operator associated to {fiticrand z € H
be arbitrarly. Then:

<z fi >= Zpl(d]) <x,e; >= pz(z <z, e; > d]) , Viel
JEel jel
Thus: T(z) = {< x, fi > }c1 = Xoje1 < ¥,¢j > dj and obvious RanT = E. Tt is
simply to check that T'f; = Pé; and therefore {f;}, .y is a tight frame with bound
1.0

3. MINIMAL DISTANCES BETWEEN A (GIVEN FRAME AND A TIGHT FRAME

We are concerned here with the closeness and distance functions d*, d? and d|
introduced earlier. In fact, we wold like to characterize the minima of these func-
tions. Here is the main result:

Theorem 3.1. Consider G = {gi};cy a frame in H with optimal frame bounds A, B
and consider the sets T', T? and T introduced in (1.9), (1.10) and (1.11). Let us

]clle;zdote by 6 = gi_% and p = %(logB —log A). Then the following conclusions
old:

1. The values of the minima of d*, d* and d|7- are given by:

mind' = mind* =0 mind|7 = p

2. These values are achieved by the following scalings of the associated tight
frames of G:

) P Al £ = YA B e
(32) fz == {fz’z}iel ) fzz = 2VAB #

it 5

(3.3) FO={fYier s [P = VABg*
Hence d"(F') = d*(F?*) =0 and d(F°) = p

3. Any tight frame that achieves the minimum of one of the three functions d',
d? or d is unitarily equivalent with the corresponding solution (3.1), (3.2) or (3.3)
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i the following way:
(3.4)

- 2
(d") 1(9) ={K = {ki}tie1lki = Ufl, U unitary and || U —

1/2 §_
visve =%

(3.5)
2vV/AB

d)H0) = {K = {k;}, .y |ki = Uf?, U unitary and || U — ———_§~1/? ||= ¢
() (0) = {K = {ki};eq fi y I Ti+ /B =0}
(3.6)
’ 1
d=Y(p) = {K = {ki};c1|ki = UF?, U unitary and || U — VABS™Y?||=|| U — —==S5"7 || = p}

VAB
where S 1s the frame operator associated to G. Moreover, any unitary operator
that parametrizes (d*)=(0), (d*)=1(0) or d=1(p) as above, has the value 1 in its
spectrum.

Proof

If G is a tight frame than Fl=F2—r'—Gand 0= p = 0 and the problem is
solved. Therefore we may suppose that A < B.

The way of proving is the following: In the first step we check that dl(}"l) =
d*(F*) = 0 and d(F°) = p. Then, since 6 < 1, it follows that the infimum of d*
and d? are less than 1. Now, using Corollary 2.5 and Theorem 2.4 we can reduce
our problem to an infimum of an operator norm. In the third step we will prove
two lemmas, one to be applied to d' and d?, and the other to d, and this will end
the proof.

i) Let us check that (3.1), (3.2), (3.3) achieve the desired values for d!, d* and d,
respectively. For f! = Qg; with Q = MS‘UZ we have d'(F) = ¢(G, F*) =||
1—-Q7 '] Now, VA < S1/2 < /B where the inequalities cannot be improved.

Therefore:
VB-VA_| o VB-VA
VB+ VA~ - VB+VA
which means || 1 — Q! ||= @. Similar, for f? = Lg; with L = \/szf\/BES_l/z we
have dz(}-z) = c(}"z,g) =|| L — 1 || and a similar calculus shows that dz(}-z) =4.

For F° we have P = Rg; with R = VABS~1/% and therefore:
d(F") = log(1 +max(|| R—1||,|| 1= R~"||))

Now, an easily calculation shows that:

B A B
— = — R Y= I _ My 4=
|R—=1]=|1-R || max(HA 1,1 ”B) ”A 1

Therefore: d(F°) = log {. 5 =p.

ii) Since we are looking for the infimum of the functions d', d* and since 6 < 1
we may restrict then our attention only on the tight frames F € 7' (or in 7?) such
that d*(F) < 1 (respectively d?(F) < 1). But this implies also that d?(F) < oo
(respectively d'(F) < oo). Therefore we may restrict our attention only to tight
frames in 7' N7T2% ="7.
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Corrolary 2.5 tells us that these frames must have the form: F = {f;},.; and
fi= \/aUgZ» =/ CUS~%¢; for some C' > 0 and U unitary. Hence:

1 _ 1
(37 $F) = 1= =S U =) =5 T |
(39 (F) =I| VOUS 1 < 1 || = || VOS2~ 1 |

1 —
(39) @(F) = max(| =S UL || VOS2 = U )

To minimize d is equivalent to minimize d°; since d° has a simpler expression, we
prefer to work with d° from now on.

Thus, our problem is reduced to find minima of the operator norms (3.7), (3.8),
(3.9) subject to C' > 0 and U unitary.

iii) The next step is to solve these norm problems. For d! and d? we apply the
following lemma to be proved later:

Lemma 3.2. Consider R a selfadjoint operator on H with a =|| R_1||_1 and b =||
R||. Then, the solution of the following inf-problem:

(3.10) o= inf ||aR—U||
a>0
U unitary
15 given by p = Z_T_g and o = (12?’ This infimum is achieved by the identity operator;

any other unitary U that achieves the infimum must have 1 in its spectrum.

If we apply this lemma with R = S'/2 o = % and a = VA, b = /B, then
gi_% =0 and o = ﬁ, hence the parametrization (3.4) of the
solutions. This proves (3.7. For (3.8) we apply the lemma with R = S=12 0 =/C

and @ = \/LE’ b : ﬁ. We get =8 and o = \/227%, hence the parametrization
(3.5) of the solutions.

For d we need a similar lemma, but this time for another optimization problem:

we get p =

Lemma 3.3. Consider R a bounded invertible selfadjoint operator on H with a =||
R_1||_1 and b = || R ||. Then, the solution of the following optimization problem:

1
(3.11) n= inf max(|| aR—=U ||,|| =R™* = U ||)
a
a>0
U unitary

15 given byu:\/g—l,a:\/%andUm the set:
(3.12)
1 b
U:H — H|U unitary and || —=R—U ||=||VabR™' - U :f—1
{ U wnitary and || Z=R =17 | =V I=y/7-1

Moreover, the set (3.15) contains the identity and therefore is not empty and the
spectrum of any U contains 1.
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The solution for d° is now straightforward: we apply this lemma to (3.9) with
R:Sl/z,a—%anda—\/_b—\/_ Wegetu—mindo—{‘/g—land
o= \/ﬁ’ hence the parametrization (3.6) of the solution and the proof of theorem
1s complete. O

It still remains to prove the two lemmas:

Proof of Lemma 3.2

Letd = a— a%. We denote by o(X) the spectrum of the operator X. Thus a,b €
o(R). Now, by Weyl’s criterion (see for instance [ReSi80]), there are two sequences
of normed vectors in H, (vn)nen and (wy)nen such that || v, ||=]] wy ||= 1 and
limy, || (R = a)v, ||= 0, lim, || (R —=b)w, ||=0

Consider § > 0. Let ¢ = %b. Then there exists an index N such that for any
n> N, || Rw, —bwy, |[< £. We get || aRw, |[> ab—c > 1 and:

bh—
||(aR—U)wn||Z|||aan||—||an|||=||aan||—1Zab—6—1=b+z+6
Therefore:
(3.13) | aR—U||> —+ S boa
’ “ bta !

Consider now § < 0. Let ¢ = —ga > 0. Then, there exists an N such that for any
n> N, || Rv, —av, ||[< £. We get || aRv, ||[< aa+e < 1 and:

bh—
| (@R = U)vn ||Z || eRvy || = || Uvn [[ | = 1= [ @Rvp [[> 1 —a —e = b+z+6
Therefore:
b
(3.14) | aR—U|> —+e>b+—a_u

From (3.13) and (3.14) we observe that the infimum of || « R — U || has the value
g;—g and may be achieved only if § = 0, i.e. o = (12?. Thus, the first part of the
lemma has been proved.

The set of all unitary U that achieves the infimum is then given by:
—a

b+a }
We still have to prove that the set (3.15) contains the identity and 1 is in spectrum
of any unitary operator from this set.

From a < R < b we get — g+g§a+bR—1§g;g 1||<b+a
But, us we have proved, g_l_—g is the minimum that can be achieved. Therefore
I aibR— 1= Z_T_Z = p and thus 1 is in the set (3.15).

Now recall the sequence (v,), and the inequality (3.13) which is realized on

(v )n. For U in the set (3.15) we have: || (=2 R — U)v, ||— p. But:

(3.15) {U:H — H|U unitary and || —R U ||—

a+b
— 2 R-U)u,||* = s R2v, > — s (RU + U*R)v, 1
g = U0l = (g < o 00 > = < (RU 4 0" R > +
From (R — a)v, — 0 we get < v, R?v, >— a®. Therefore:
a+b 4d®

lim < vy, (RU 4+ U*R)v, >= +1—0?) =2a

2 ((a + b)?
Now:

RU+U*R=(R—a)U+U"(R—a)+a(U+U")
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and the previous limit gives lim, < vy, (U + U*)v, >= 2.
Therefore:

| (U = Dvp||” =< vn, (2 = (U +U*))vp, >0

or lim, || ( = 1)v, ||= 0 which proves 1 € ¢(U). O
Proof of Lemma 3.3
Firstly, let us solve the following scalar problem:

1
(3.16) g= inf max( max Jazr—1|, max |——1|)
a>0 a<z<b a<z<b ar

Because of monotonicity:

max  |az — 1] = max (Joa — 1|, |ab—1])
a<zr<b
1 1 1
max | — 1] = max (| = — 1], | = — 1)
a<az<bh OF aa ab
_ . 1 1
Therefore i = inf  f(«) where f(o) = max (|aa—1], |ab—1], |£—1|, |£—1|)
a>0

It is now simply to check that the infimum may be achieved only when at least two
moduli are equal. This condition is fulfilled at the following points:

2 1ol 1 fTa 11 a+b
al—a+baa2_aaa3_a a b’a4_\/%’a5_b’a6_ 2ab

We evaluate f(«) at these points and we get:

fla1) = b_a; flaz) = b_a; flas) = b_a(\/g—\/b—a)

2a a a

f(a4):£—1; flas) = b;a; flag) = b2—aa

It is obvious now that: f(os) < f(o1) = flae) < flaz) = flas) < f(as) and

therefore o = f(a4) = g— 1 and aoprim = aa = \/%. Observe also that for
o = a4 we have:
1
max  |agz — 1] = max |— — 1]
a<az<b a<z<b et

Let us now return to the norm problem (3.11). Our claiming is that the infimum is
achieved for a = \/% = a4 and U = 1 (the identity) and the value of the infimum

1S = \/g — 1 = fi. The solution of the scalar problem (3.16) proves also that the
set (3.12) contains the identity.

We are going now to prove that g = i is the optimum and o = a4. As in the
previous lemma, consider (v, )n>1 and (wn)n>1 two sequences of normed vectots in
H (|| v [|=|| wn ||= 1) such that lim, || (R — a)v, || =0, lim,, || (R = b)w, ||=0.
It is simply to check that lim, || (R™1 — %)vn ||=0 and lim, || (R=! — %)wn |=0
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hold too. Now, consider some o > 0, & # g = \/%. Then, as the scalar problem

proved, we have:

1
(3.17) either max  |ax —1| > jior max |——1|>p
a<z<b a<az<b ar

Suppose the first inequality holds. Now, either |aa — 1| > g or |ab— 1| > g. In the
former case we use the sequence (v, ), as follows: Let ¢ = £ (|oa — 1| — 1) > 0 and
let N. be such that || (R — a)v, || < £ for any n > N.. Then:

| (@R =U)v [[> [ || «Rvp || = [| Uvn ||| = ||| avp + (R = a)vn || =1] >

> Jaa— 1= a | (R—a)v, ||> fite

which implies || aR—U ||> p+e.
Similarly, in the later case (Jab— 1| > ji) we take ¢ = £(|ab— 1| — ) > 0 and
N such that || (R — b)w, || < £ for any n > N.. Therefore:

| (@R = U)wn || 2 [ [ aRwy || = || Uwn ||| = fa[[ bwn + (R = b)w, || =1] >

> Jab—1] = o || (R = bwn | > i+

Thus, in both cases we obtain || «R — U || > f. If the second inequality in (3.17)
holds, a similar argument can be used to prove that, for o # oy we have || éR_l —
U || > fi. Therefore the optimum in (3.11) is achieved for o = \/% and the value of

1tis p = \/g — 1. It is obvious now that the set of unitary operators that achieve

the optimum is given by (3.12) and also that the identity operator is in that set.
The only problem that still remains to be proved is that all these unitary operators
have 1 in their spectra.

The previous argument proves the following conclusion: fix dg > small enough
and let U be in the set (3.12). Then, for any 0 < § < §y the following inequality
holds:

1
0 <||(6R+—R—U)w,
<l GR+ =R = U, |

for n > N5 where Ny is an integer depending on 8. Then g <|| (§R+ \/L%R—U)wn I
< & || R|| +pforn > Ns, and it is fairly easy to prove now that || (\/%R—U)wn ||—
it when n — oo. Now, by repeating the argument given in the previous lemma we

obtain lim, || (U — 1)w, ||= 0 which proves 1 € ¢(U) and the lemma is proved. O

4. CONCLUSIONS

In this paper we introduced and studied a distance between Hilbert frames having
the same index set I. This distance partitions the set of frames into equivalency
classes characterized (and indexed) by closed subspaces of the space of coefficients
[%(I). Thus two frames are at a finite distance if and only if their analysis operators
have the same (closed) range in [?(I) and this happens if and only if there exists a
bounded and invertible operator on the Hilbert space that maps one frame set into
the other.

Next we determined the closest, respectively nearest, tight frame to a given
frame. It turns out that these tight frames are scaled versions of the associated
tight frame.



EQUIVALENCE RELATIONS AND DISTANCES BETWEEN HILBERT FRAMES 15

We point out that the entire theory can be carried out on the set of Hilbert
frames over different Hilbert spaces, but indexed by the same index set. All the
results are similar, the changes being straightforward.

As a final remark we acknowledge that the two Lemmas 2.1 and 2.2 have also been
independently obtained by D.Han and D.R.Larson in a recent paper ([HaLa97]).
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