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ABSTRACT
In this paper we present a robustness study of the two chan-
nel echoic parametric demixing problem. More specific, as-
sume an oracle (or a perfect estimator) is providing a trun-
cated estimate of the mixing room FIR filters for a source
configuration. Based on this information, the unmixer is
constructed with the adjoint of the (truncated) mixing ma-
trix. For several degrees of truncation, we compute how
fast the separation SNR is decaying with respect to a ra-
dius R, when the actual position of one source is uniformly
distributed on a ball of radius R, around the assumed po-
sition. Numerical simulations of artificial echoic mixings
show that despite the increasing of the demixing SNR gain
with the demixing filter truncation order, the higher order
filters are less robust to position uncertainties and the over-
all performance remains almost constant after the second
order approximation.

1. INTRODUCTION

The Blind Source Separation problem has been the focus
of many studies in recent years. Two international confer-
ences (Aussois 1999, Helsinki 2000) have been dedicated to
this (and Independent Component Analysis, that is a closely
related subject) topic. Successful applications in images
and medical signals have been presented. Yet, in audio sig-
nal processing, real-time blind source separation techniques
proved only modest gains (see [1, 2]), maybe not completely
unexpected would we take into account the results of multi-
microphone signal enhancement techniques (see [3]). Sev-
eral BSS methods have been proposed to separate and un-
mix more voices. In particular there are two classes of un-
mixing methods: one class uses parametric mixing models
thus reducing the number of degrees of freedom of the iden-
tification problem, whereas the other class doesn’t exploit
the relative sparsity of the mixing model, but uses a full
non-parametric (or at least, not explicitely parametric), un-
mixing scheme. We shall call the former class the paramet-
ric BSS, whereas the latter solution will be termed as non-
parametric BSS. Parametric BSS solutions have first been

studied in the context of unechoic mixtures (see [4, 5]). In
such cases, only four parameters are needed: two delays and
two attenuations. Moreover, if the microphones are close
enough, the attenuations can be set to one, and only two pa-
rameters, namely the delays, have to be used. For echoic
environments, the simple direct-path model can be used as
an starting point for a more complex mixing (or unmixing)
model (see [6]). Nonparametric mixing models are imple-
menting either in time-domain or frequency domain. The
time-domain approach considers long FIR or IIR filters and
tries to adapt the filter coefficients so to obtain as indepen-
dent outputs as possible (see [7, 8]). The frequency domain
approach makes use of the following simple but very use-
ful observation, namely, at each frequency, a convolutive
mixing becomes a simple multiplicative mixing. There is a
caveat to this statement: the window size to perform FFT
has to be sufficiently large compared to the room reverber-
ation (see [9] for an analysis of the simple delay operator).
This remark requires long filters. On top of this, there is
a permutation problem that has to be solved. Several ap-
proaches have been proposed. They all use an ICA method
to demix on each frequency, independently from one an-
other, and then using some criterion, find the right permuta-
tion matrix (see [10, 11, 12, 13]).

Assume a parametric mixing model with two sources
and two microphones of the form:

x1(t) =
eX

n=0

an11s1(t � �n11) + an12s2(t� �n12) (1)

x2(t) =
eX

n=0

an21s1(t � �n21) + an22s2(t� �n22) (2)

where e is the number of echoes (path) the model has (is
determined by the room reverberation time through the sam-
pling frequency), s1(�), s2(�) are the source signals, x1(�); x2(�)
are the measured signals, an

ij
is the nth path attenuation co-

efficient from source j to microphone i, and �n
ij

the corre-
sponding delay. All the time variables (and delays) are mea-
sured in samples. For the delays, we assume the sampling
frequency is sufficiently high, and the distance between mi-
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crophones, respectively between sources, sufficiently large
to be assumed integers. Let us denote by M the 2�2 matrix
of mixing filter transfer functions:

M (z) =

�
M11(z) M12(z)
M21(z) M22(z)

�
(3)

Mij(z) =
eX

n=0

an
ij
z��

n

ij (4)

There are at least four techniques to enhance the sources
s1 and s2 from the mixtures x1; x2. The first two methods
aim toward source separation and use either the inverse of
the mixing matrix, or its adjoint (see [5, 4]). The other two
techniques aim mostly to signal enhancement and are the
multiple delay-and-sum beamformer (when only informa-
tion of arrival times is required), or matching filters (when
the full mixing matrix is used) - see [14]. In this paper we
discuss the use of the adjoint matrix as an unmixing solu-
tion.

Set W = adj(M ), the adjoint of M . Recall the adjoint
is defined by:

adj(M ) =

�
M22(z) �M12(z)
�M21(z) M11(z)

�

When applied on (x1(�); x2(�)), the outputs are:
�
u1
u2

�
= W

�
x1
x2

�
(5)

u1(t) =
P

e

n=0 a
n

22x1(t� n)� an12x2(t� n)
u2(t) =

P
e

n=0�a
n

21x1(t� n) + an11x2(t� n)
(6)

and combined with (1,2) we do obtain a separation between
between the outputs:

u1(t) =
eX

n;m=0

(an22a
m

11 � an12a
m

21)s1(t � n�m) (7)

u2(t) =
eX

n;m=0

(an22a
m

11 � an12a
m

21)s2(t � n�m) (8)

Such a solution is very good in practice, in both the quality
of the output (i.e. artifacts) and the quantity of the cross-
talk (ideal is zero). However, it requires the knowledge of
the room impulse responses (i.e. mixing matrix M ) and
that is a daunting task when performed blindly. As we show
next, a truncated approximation of the full mixing matrix
yields good separation results. This suggest to use a lower
dimensional parametrization of the mixing process. The is-
sue then becomes, how robust the separation is in the pres-
ence of uncertainties on impulse response coefficients? In
this paper we give an answer to this question, of the robust-
ness of parametric demixing solution in the case of echoic

source mixing. The problem can obviously be formulated in
the case of more than 2 channels. Here we consider only the
case of two microphones because of a practical constraint:
We target applications into mobile communication area, and
mobile phones, or PDA boards, are not big enough to make
feasable the use of more than 2 microphones.

The organization of the paper is as follows: section 2
presents the setup and robustness measures; section 3 con-
tains the numerical results; section 4 contains the conclu-
sions and is followed by the bibliography.

2. MEASURES OF ROBUSTNESS

Consider a mixing matrix of (sparse) FIR filtersM as in (3),
where the mixing coefficients an

ij
are ordered according to

their arrival time. We define the truncation of order q of
this matrix as the 2 � 2 matrix of FIR filters obtained by
truncating Mij to its first q + 1 nontrivial (i.e. non-zero)
terms. Thus:

truncq(M ) =

� P
q

n=0 a
n

11z
��

n

11

P
q

n=0 a
n

12z
��

n

12P
q

n=0 a
n

21z
��

n

21

P
q

n=0 a
n

22z
��

n

22

�

(9)

The adjoint matrix of this truncated matrix, gives rise to an
unmixing filter denoted Wq . Thus Wq = adj(truncq(M )).
Note that the two operation commute in this case:

truncq(adj(M )) = adj(truncq(M )):

Hence, we can equally say Wq is simply the truncated ma-
trix of the complete unmixing matrix W = adj(M ).

Consider now the following setup. Into an echoic room
(4 � 5 � 2:5 m) as in Figure 1, with reflection coefficients
(0:5; 0:5; 0:2) (floor, walls, ceil), we place two microphones
at P1 (2:95; 2; 1) and P2 (3:05; 2; 1) and two independent
sources of unit variance white noise at V1 (2; 2; 1:5), and V2
(whose position will change). Assume the mixing filters are
given for a nominal position of V2, say M (V2 = V20), and
an unmixing filter Wq is constructed according to (9). Fix
this unmixing filter Wq. We want to evaluate its separation
performance for the case when the actual position of the
second source (V2) differs from the assumed position V20.

To do so we first introduce and explicitely compute the
SNR gain of the overall scheme. Denote byM some generic
mixing filters and byW some generic unmixing filters. Since
we assumed the sources are unit variance white noise, the
input SNRs are:

SNRi

1 =
kM11k

2

kM12k
2
; SNRi

2 =
kM22k

2

kM21k
2

(10)

where the norms are given by:

kMijk
2 =

eX
n=0

jan
ij
j
2 (11)
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The output SNRs are given by:

SNRo

1 = kW11M11+W12M21k
2

kW11M12+W12M22k
2

SNRo

2 = kW22M22+W21M12k
2

W21M11+W22M21k
2

(12)

Hence the SNR gain is measured by:

G1 = 10 log10(
kW11M11 +W12M21k

2

kW11M12 +W12M22k
2

kM12k
2

kM11k
2
)(13)

G2 = 10 log10(
kW21M12 +W22M22k

2

kW21M11 +W22M21k
2

kM21k
2

kM22k
2
)(14)

Once we have established the robustness criterion, we
define now the uncertainty model. Let us return to the setup
presented before. For the nominal configuration of sources
(V1; V2 = V20) the mixing matrix is M0. To such a mix-
ing matrix there correspond a series of unmixing matrices
defined via:

Wq = adj(truncq(M0)) = Wq(V20) (15)

and indexed by the truncation order q. Asssume now that
one of the sources (which in our setup will be source num-
ber two) is in fact located in a different position, say V2.
Then, the true mixing matrix is M = M (V2) and the over-
all performance of the unmixing scheme is characterized by
the gains (13) computed for (M;Wq). Thus we obtain two
position dependent functions Gq

1(V2), G
q

2(V2), indexed by
the truncation order q. Assuming the position V2 is uni-
formly distributed in a ball of radius r around the nominal
position V20, we want to estimate the average SNR gain of
this demixing scheme. Then the quantities we are interested
in are:

avG1(q;R) =
1

V ol(BR)

Z
BR(V20)

G1(V2)d
3V2 (16)

and avG2(q;R) defined similarly. In the next section we
present the numerical results for the setup presented before.
Since the behaviour of avG2 is very much similar to that of
avG1, we concentrate only on the former criterion.

3. NUMERICAL RESULTS

The echoic environment presented before was simulated on
a Pentium III machine. The microphone distance was 10cm,
and the distances between the sources and mid-point be-
tween microphones were 1m, respectively 1.5m. The first
source was fixed on the line connecting the microphones
(as in Figure 1), whereas source 2 was rotated in increments
of 30 degrees between -120 degree and +120 degree. Each
such position was a nominal position for robustness mea-
surement. The impulse responses were computed by taking
into account all sound bouncing of the wall up to order 5 at

Fig. 1. Setup Configuration.

a sampling frequency of 16KHz. In average, we obtained
about 200 coefficients per channel (see Figure 2). The trun-
cation order ranged from 0 (direct path) to 10 (direct path +
10 echoes). The ball radius varied from 5cm up to 1m, in
increments of 5cm. On each spherical corona we computed
the gain for 288 points, and then averaged out the result
thus obtaining an estimate of avG1 of (16). For � = 30o

and � = 60o the average SNR gains are presented in Table
1.
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Fig. 2. Impulse Responses: M11 (top-left), M12(top-right),
M21 (bottom left) and M22 (bottom right) for � = 90.

Next we plot the variations of SNRs with respect to the
approximation degree q, for 11 values of r (from 0 to 1:0m
in increments of 10cm: r = 0; 0:1; 0:2; : : : ; 1:0) - left plots
- and the variation of SNRs with respect to the distance r,
for 11 values of q (from 0 to 10) - right plots (Figures 3-11).
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qnr[m] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 6.05 5.94 5.67 5.36 5.19 4.90 4.69 4.46 4.22 3.98 3.72
1 6.80 6.10 5.77 5.52 5.37 5.09 4.89 4.65 4.41 4.16 3.89
2 8.01 6.02 5.61 5.34 5.17 4.89 4.68 4.44 4.21 3.97 3.71
3 8.93 5.83 5.31 4.97 4.78 4.49 4.29 4.05 3.83 3.60 3.35
4 9.29 5.89 5.35 5.03 4.83 4.54 4.33 4.10 3.87 3.64 3.39
5 9.54 5.88 5.32 4.99 4.79 4.50 4.29 4.06 3.83 3.61 3.36
6 9.75 5.92 5.36 5.02 4.82 4.53 4.32 4.09 3.86 3.63 3.38
7 10.62 5.80 5.25 4.92 4.71 4.42 4.22 3.99 3.77 3.54 3.30
8 12.01 5.75 5.20 4.87 4.67 4.38 4.18 3.95 3.74 3.51 3.27
9 12.00 5.73 5.19 4.86 4.66 4.37 4.17 3.94 3.73 3.50 3.26
10 12.10 5.75 5.20 4.87 4.67 4.38 4.18 3.95 3.73 3.51 3.27

qnr[m] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 7.48 5.71 5.57 5.25 4.71 4.42 4.12 3.77 3.52 3.34 3.12
1 8.59 6.22 6.00 5.69 5.12 4.81 4.51 4.13 3.86 3.66 3.43
2 10.17 6.83 6.44 6.06 5.44 5.10 4.77 4.39 4.11 3.90 3.66
3 11.62 6.97 6.44 6.02 5.37 5.02 4.69 4.30 4.03 3.82 3.58
4 12.20 7.16 6.61 6.16 5.50 5.14 4.80 4.40 4.12 3.90 3.65
5 12.42 7.14 6.58 6.13 5.47 5.11 4.77 4.38 4.09 3.88 3.63
6 12.70 7.20 6.62 6.16 5.49 5.13 4.78 4.39 4.10 3.89 3.64
7 13.50 7.18 6.56 6.09 5.43 5.06 4.72 4.33 4.05 3.84 3.59
8 14.02 7.31 6.67 6.19 5.52 5.14 4.79 4.40 4.11 3.89 3.64
9 14.04 7.32 6.67 6.19 5.52 5.14 4.79 4.40 4.11 3.89 3.64
10 14.69 7.21 6.57 6.09 5.43 5.06 4.72 4.32 4.04 3.83 3.59

Table 1. SNR gains in [dB] for � = 30o (top) and � = 60o (bottom).
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Fig. 3. SNR Gain for � = �120o

These plots show that a significant SNR impovement
is obtained by higher order demixing schemes, when the
source positions are known precisely (zero error). However,
in the presence of uncertainties, the performance degrades
very fast. Thus, as little as 5 cm makes the performance in-
sensitive to the modeling degree (see the angles � = �120,
� = �30, � = 30 and � = 120), whereas at � = 0, the
performance downgrades with the increasing of the model
order. On the other hand, for uncertainty as little as 10cm,
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Fig. 4. SNR Gain for � = �90o

the SNR gains increases by only 1-3dB when going from
the lowest order model (direct path) to the highest complex-
ity model considered here (direct path + 10 echoes). This
shows that higher-order-model based demixing behaves al-
most as well as the direct-path-only demixer in the presence
of position uncertainties.
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Fig. 5. SNR Gains for � = �60o
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Fig. 6. SNR Gain for � = �30o

4. CONCLUSIONS

In this paper we studied the behaviour of room modeling
based demixing schemes under the presence of uncertain-
ties. We have computed analytically the SNR gain of the
two-microphone demixing scheme based on the adjoint of
the mixing matrix. Assuming that an oracle (or through a
precalibration) would tell us the mixing matrix for a spec-
ified position of the sources, we analyzed the influence of
the position uncrtainty to the SNR gain for several degrees
of approximation. In particular we varied the demixing filter
order by considering up to 10 multipaths, and the position
uncertainty from 0 to 1m, in increments of 5cm.

The results show a dramatic degrading of the perfor-
mance for as little as 5cm uncertainty in the position of the
sources. They also show that higher order models do not
sensibly improve, compared to the direct path only or other
lower order demixing schemes. In fact, for some configura-
tion, the performance degrades by increasing the demixing
model order.

Since a higher order parametric model identification al-
gorithm is very expensive, and the corresponding demix-
ing scheme would improve by very little in the presence
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Fig. 7. SNR Gain for � = 0o
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Fig. 8. SNR Gain for � = 30o

of uncertainties, it seems reasonable that further research
should avoid increasing the mixing model complexity (by
parametrizing several multipaths), instead it should concen-
trate in lower order mixing models (direct path only, or di-
rect path plus one or two paths).

5. REFERENCES

[1] K. Torkolla, “Blind separation for audio signals: Are
we there yet?,” in First International Workshop on In-
dependent component analysis and blind source sepa-
ration, Aussois, France, Jan. 1999, pp. 239–244.

[2] F. Asano and S. Ikeda, “Evaluation and real-time
implementation of blind source separation system us-
ing time-delayed decorrelation,” in Proceedings of
the Second International Workshop on ICA and BSS,
P. Pajunen and J. Karhunen, Eds. 2000, Otamedia.

[3] M. Brandstein and D. Ward, Eds., Microphone Arrays,
Springer, 2001.

[4] Justinian Rosca, Joseph Ó Ruanaidh, Alexander Jour-
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