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Equivalence of Reconstruction from the Absolute
Value of the Frame Coefficients to a Sparse

Representation Problem
Radu Balan*,Senior Member, IEEE,Pete Casazza, and Dan Edidin

Abstract— The purpose of this note is to prove, for real
frames, that signal reconstruction from the absolute value of
the frame coefficients is equivalent to solution of a sparse signal
optimization problem, namely a minimum `p (quasi)norm over
a linear constraint. This linear constraint reflects the coefficients
relationship within the range of the analysis operator.

Index Terms— frames, nonlinear processing, sparse represen-
tation

I. I NTRODUCTION

In our previous paper [2] we considered the problem of
signal reconstruction from the absolute value of its coefficients
in a redundant representation. We obtained necessary and
sufficient conditions for perfect reconstruction up to a constant
phase factor. In the finite dimensional setting, aframe for
a Hilbert space is just a set of vectors spanning the Hilbert
space. For real valued signals and real valued transformations
we obtained the following result

Theorem 1.1:Let M : RN/{+1,−1} → RM be defined
by M(x) = {|〈x, fk〉|}1≤k≤M , whereF = {f1, f2, . . . , fM}
spansRN . Then:

1) If M ≥ 2N − 1 then for a generic frameF , the mapM
is injective;

2) If M is injective, thenM ≥ 2N − 1;
3) If M = 2N − 1 thenM is injective if and only if every

N -element subset ofF is linearly independent.
4) M is injective if and only if for every subsetG ⊂ F ,

eitherG or F \ G spansRN .
5) If M > N then for a generic frameF , the set of points

x ∈ RN/{+1,−1} so thatM−1(M(x)) contains one
point, is dense inRN .

♦
Here generic frames denote an open and dense set of frames,
with respect to the topology induced by the Grassmanian
manifold topology (see [2]).

In a completely different line of research, Donoho and Huo
obtained in their seminal paper [3] an equivalence result for
solving sparse optimization problems. More specifically let us
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consider the following objects.

T =
[

I R
]

(1)

D(N) =
1
2
(1 +

√
N) (2)

whereI is theN ×N identity matrix, andR is theN -point
unitary FFT matrix. Let‖c‖p = (

∑M
k=1 |ck|p)1/p for any M -

vector c, and p > 0. For p = 0, we define‖c‖0 to be the
number of nonzero entries ofc. With these notations Donoho
and Huo showed the following result:

Theorem 1.2:Assumex = Tc′ for somec′ ∈ C2N so that
‖c‖0 < D(N). Then the following two optimization problems
admit the same unique solutionc′:

ĉ0 = argminc:x=Tc ‖c‖0 (3)

ĉ1 = argminc:x=Tc ‖c‖1 (4)

♦
The boundD(N) as stated here was next improved by Elad
and Bruckstein in [5] toD(N) = (

√
2 − 1

2 )
√

N , and also
extended to other matrices than this particularT (see also [4],
[6], [7]).

Optimization problems of type (3) and (4) are also related
to sparse multicomponent signal decompositions. More specif-
ically, consider the following estimation problem. Given the
model

x = Us + V t =
[

U V
] [

s
t

]
(5)

wherex ∈ RN is the vector of measurements,s, t ∈ RM are
vectors of unknown component coefficients,U, V are known
N × M mixing matrices, the problem is to obtain the Max-
imum A Posteriori (MAP) estimator of the two components
Us andV t, whens andt are known to have prior distributions
of the form

pS(s) ∝ exp(−α ‖s‖p
p) , pT (t) ∝ exp(−β ‖t‖p

p) (6)

It is then immediate to derive the MAP estimator as:

(ŝ, t̂)MAP = argminUs+V t=x α ‖s‖p
p + β ‖t‖p

p (7)

Note for p < 1, prior distributions of type (6) have long
tails, are peakier than Gaussian (p=2), or even Laplacian (p=1)
distributions, and allocate uniformly larger costs for nonzero
components compared to the vanishing components.

In this short note we present a necessary condition for
perfect reconstruction from the absolute value of the frame
coefficients in terms of a sparse representation optimization
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problem. Furthermore, the optimization problem gives the
solution for the reconstruction problem.

II. N OTATIONS

We use the following notations.
Let F = [f1| · · · |fM ] denote theN ×M real matrix whose

columns are theM frame vectors{f1, . . . , fM} in RN . Let
G = [f̃1| · · · |f̃M ] denote theN × M matrix whose columns
are the canonical dual frame vectors. That is,

FGT = GFT = IN , (perfect reconstruction)

FT G = GT F = P , (projection onto the coefficients space)

Recall the map we are interested in is:

M : RN/{+1,−1} → RM , M(x) = {|〈x, fk〉|}1≤k≤M

(8)
whereRN/{+1,−1} = {x̂ ; } is the set of classes of vectors
x̂ obtained by identification ofx with −x, that isx̂ = {x,−x}.
Perfect reconstruction up to a sign of the vectorx is possible
if and only if M is injective.

Let a ∈ RanM := {|FT x| ; x ∈ RN}. We denote byA,
K, andα the 2M × 2M real matrices, respectively the2M
vector, defined by

A =
[

I I
I − P −(I − P )

]
, K =

[
0 I
I 0

]
, α =

[
a
0

]
(9)

For vectorsu ∈ Rm, u ≥ 0 meansuk ≥ 0 for every k. For
y ∈ Rm, we denote|y| the vector of absolute values of its
entries,|y| = (|yk|)1≤k≤m. We also letsupp(y) denote the
support of the vectory, that issupp(y) = {k ; yk 6= 0}.

III. M AIN RESULT

Theorem 3.1:Let a ∈ Ran M. If M−1(a) contains only
one point, say{x̂}, then for every0 ≤ p < 1 the following
optimization problem

argmin Au = α ‖u‖p (10)

admits exactly two solutionsu and ũ = Ku ∈ R2M

independent ofp, with u = [tT sT ]T so thata = |t + s|,
and x̂ = {G(t− s),−G(t− s)}.

Conversely, if for some0 ≤ p < 1 the optimization problem
(10) admits at most two solutions, thenM−1(a) contains
exactly one point. ♦

The proof is based on two key ingredients: one is the
decomposition of any real number into its positive and negative
parts; the other ingredient is the inequality|a+b|p ≤ |a|p+|b|p,
for all a, b ∈ R and 0 ≤ p < 1, where the equality holds if
and only if one ofa, b is zero.

Proof
(1) Proof of⇒.
Let x ∈ M−1(a). Thusa = |FT x|. Let t, s be the positive,

and respectively the negative part ofFT x, that is:

tk =
{

(FT x)k if (FT x)k ≥ 0
0 otherwise

(11)

sk =
{

0 if (FT x)k ≥ 0
−(FT x)k otherwise

(12)

for all 1 ≤ k ≤ M . Note t, s ≥ 0. We claimu = [tT sT ]T

and ũ = [sT tT ]T are the only solutions of (10).
Since they satisfyFT x = t− s, we obtaina = |t + s|, and

x = G(t− s).
To prove the claim, first note that bothu and ũ are feasible

vectors, that is they satisfy the linear constraintAu = α. Let
u′ = [vT wT ]T be another feasible vector, that isAu′ = α.
We will prove ‖u′‖p ≥ ‖u‖p, and‖u′‖p = ‖u‖p if and only
if either u′ = u, or u′ = ũ.

Indeed, we haveu′ = u + d, whered ∈ ker A. Due to the
special form ofA in (9), we obtain:

d =
[

h
−h

]
, h ∈ RanP (13)

Let J = supp(d) = {k ; dk 6= 0} ⊂ {1, 2, . . . , 2M}, I =
supp(u), andI0 = I \ J , I1 = I ∩ J , andI2 = J \ I. Then
supp(u′) ⊂ I0 ∪ I1 ∪ I2 and

‖u′‖p
p =

∑
k∈I0

|uk|p +
∑
k∈I1

|uk + dk|p +
∑
k∈I2

|dk|p (14)

Let σ : {1, 2, . . . , 2M} → {1, 2, . . . , 2M} be the mapσ(m) =
m + M , if m ≤ M , andσ(m) = m − M for m > M . Let
j : {1, 2, . . . , 2M} → {1, 2, . . . ,M} be the mapj(m) = m,
for m ≤ M , and j(m) = m − M , for m > M . Because of
special form ofd, k0 ∈ J if and only if σ(k0) ∈ J , that is
σ(J) = J . On the other hand, the choice oft ands guarantees
that k0 ∈ I if and only if σ(k0) 6∈ I, that is I ∩ σ(I) = ∅.
Thus if k ∈ I1 then σ(k) ∈ I2 (althoughσ(I1) ⊂ I2 may
be strict) and|dk| = |dσ(k)| = |hj(m)|. Let I21 = σ(I1) and
I22 = I2 \ I21. ThusI2 = I21 ∪ I22, and

‖u′‖p
p =

∑
k∈I0

|uk|p +
∑
k∈I1

|uk + dk|p +
∑

k∈I21

|dk|p +
∑

k∈I22

|dk|p

= ‖u‖p
p +

∑
k∈I1

[|uk + dk|p + |dk|p − |uk|p] +
∑

k∈I22

|dk|p (15)

For 0 ≤ p < 1, we have|uk + dk|p + |dk|p ≥ |uk|p with
equality achieved if and only if eitherdk = 0, or dk = −uk.
This proves that:

‖u′‖p ≥ ‖u‖p (16)

and thusu is a global optimizer for (10).
The only remaining issue is to prove that if‖u′‖p = ‖u‖p,

then eitheru′ = u, or u′ = Ku. Equations (15) prove that
‖u′‖p = ‖u‖p if and only if I22 = ∅ and for all k ∈ I1,
eitherdk = −uk, or dk = 0. Howeverdk 6= 0 for k ∈ I1 (by
construction), hencedk = −uk for all k ∈ I1. This means:

(u′)k =

 uk for k ∈ I0

uk for k ∈ I21 = σ(I1)
0 otherwise

(17)

Let t′, s′ be theM -components ofu′, u′ = [(t′)T (s′)T ]T . The
feasibility constraintAu′ = α implies thatt′ + s′ = a, and
(I−P )(t′−s′) = 0. Let c′ = t′−s′. ThusPc′ = c′, hencec′ ∈
RanFT . On the other hand, sinceI22 = ∅ and σ(I1) ⊂ I2,
we have thatσ(I1) = I2. Hence,σ(I2) = σ2(I1) = I1 and so
I0∩σ(I2) = I0∩I1 = ∅. Also, by constructionI0∩I2 = ∅ and
it follows σ(supp(u′))∩supp(u′) = ∅. Thus|c′| = t′+s′ = a.
This meansx′ = Gc′ is in M−1(a). SinceM−1(a) contains
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only one point,x̂ = {x,−x}, it follows that eitheru′ = u, or
u′ = −u, which ends the proof of this way.

(2) Proof of⇐.
Fix a ∈ M, and assumeM−1 has at least two classes, say

x̂ = {x,−x} and x̂′ = {x′,−x′}. Consider again the positive
and negative parts ofFT x and FT x′, respectively, sayt, s,
and t′, s′. Sincex 6= x′ and x 6= −x′, yet |FT x| = |FT x′|,
it follows that t′ 6= t and t′ 6= s, yet ‖u‖p = ‖u′‖p, where
u = [tT sT ]T and u′ = [t′T s′T ]T . Thusu, Ku, u′,Ku′ are
distinct solutions of (10), which proves the converse.

Q.E.D. ♦
Remark 1:Note that forp = 1 the result does not hold true.

Indeed, forp = 1 any feasible vectoru of (10) of positive
components has the samel1 norm: ‖u‖1 = ‖a‖1.

Remark 2: If u is a feasible vector, that is it satisfiesAu =
α, thenKu is also a feasible vector, that is it satisfiesAKu =
α, In particular, if u is a solution of (10) thenKu is also a
solution of same problem.

Remark 3:Note that we do not impose any positivity
constraint onu in (10). And yet, remarkably, the optimizer
turns out to have nonnegative components.

Remark 4:Connections betweeǹp optimization problems
and sparse signal representations have been studied in litera-
ture in the context of solving ICA type problems; see [8], [9],
[1].

Corollary 3.2: If M is injective, then for alla ∈ Ran M,
and0 ≤ p < 1, the optimization problem (10) admits only two
solutionsu andKu so thatM−1(a) = {G(t− s), G(s− t)},
whereu = [tT sT ]T .

Corollary 3.3: If (10) admits at most one solution for all
a, thenM is injective.

IV. CONCLUSIONS

In this paper we study the reconstruction problem of a real
signal when only absolute values of its real frame coefficients
are known. In general one can expect at most to reconstruct
the original signal up to an ambiguity of one global sign. We
prove that this is the case if and only if an`p optimization
problem, more specifically (10), admits exactly two solutions.
Furthermore, the solutions of this problem are directly related
to the original (and reconstructed) signal. This result reduces a
combinatorial optimization problem (where the combinatorics
are due to the exhaustive search over all possible sign combi-
nations) to aǹ p optimization problem (albeit nonconvex).
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