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Abstract—The purpose of this note is to prove, for real consider the following objects.
frames, that signal reconstruction from the absolute value of

the frame coefficients is equivalent to solution of a sparse signal T = [ I R ] (1)
optimization problem, namely a minimum ¢” (quasi)norm over 1
a linear constraint. This linear constraint reflects the coefficients D(N) = 5(1 +VN) (2)

relationship within the range of the analysis operator. ] ) ) . ] .
where is the N x N identity matrix, andR is the N-point

unitary FFT matrix. Letc||, = (Z,I:I:l |cx|P)/P for any M-
vectorc, andp > 0. Forp = 0, we define||c[|, to be the
number of nonzero entries of With these notations Donoho
|. INTRODUCTION and Huo showed the following result:

Theorem 1.2:Assumex = T'¢’ for somec’ € C?V so that

In our previous paper [2] we considered the problem q1|fc||0 < D(N). Then the following two optimization problems
signal reconstruction from the absolute value of its coefficienggimit the same unique solutiaft

in a redundant representation. We obtained necessary and

sufficient conditions for perfect reconstruction up to a constant ¢o = argminca=rellcl, ®)
phase factor. In the finite dimensional settingframe for ¢ = argmincaz—r. |l (4)
a Hilbert space is just a set of vectors spanning the Hilbgrgnt

Index Terms—frames, nonlinear processing, sparse represen-
tation

space. For real valued signals and real valued transformati
we obtained the following result
Theorem 1.1:Let M : RN /{+1,—-1} — RM be defined

by M(SC) = {‘<$,fk>|}1§}g§1\/[, where F = {fl,fg, . 7f]\/[}

N : [6], [7]).
spansk™. Then: Optimization problems of type (3) and (4) are also related

1) If M > 2N —1 then for a generic fram&, the mapM  to sparse multicomponent signal decompositions. More specif-

is injective, ically, consider the following estimation problem. Given the
2) If M is injective, thenM > 2N — 1, model

3) If M =2N —1 thenM is injective if and only if every
N-element subset of is linearly independent.

4) M is injective if and only if for every subse&f C F,
eitherG or F\ G spansR”.

5) If M > N then for a generic fram&, the set of points
r € RY/{+1,-1} so thatM~!(M(x)) contains one
point, is dense iIR".

he boundD(N) as stated here was next improved by Elad

and Bruckstein in [5] toD(N) = (V2 — 2)V/N, and also
extended to other matrices than this particdlasee also [4],

e=Us+Vt=[U v][ﬂ (5)

wherez € RY is the vector of measurements,t € RM are
vectors of unknown component coefficient§,V are known
N x M mixing matrices, the problem is to obtain the Max-
imum A Posteriori (MAP) estimator of the two components
Us andV't, whens andt are known to have prior distributions

Y of the form
Here generic frames denote an open and dense set of frames,

with respect to the topology induced by the Grassmanian Ps(s) o exp(—allsll)) , pr(t) ocexp(=3tl;)  (6)
manifold topology (see [2]). It is then immediate to derive the MAP estimator as:

In a completely different line of research, Donoho and Huo o .
obtained in their seminal paper [3] an equivalence result for  (3,0)amap = argminysivi—. ollslly + B¢,  (7)

solving sparse optimization problems. More specifically let Yote for p < 1, prior distributions of type (6) have long

, o tails, are peakier than Gaussian (p=2), or even Laplacian (p=1)
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problem. Furthermore, the optimization problem gives ther all 1 < k < M. Notet,s > 0. We claimu = [tT sT|T

solution for the reconstruction problem.

Il. NOTATIONS
We use the following notations.

anda = [sT tT]T are the only solutions of (10).

Since they satisfy"”xz = ¢t — s, we obtaina = |t + s|, and
x=G(t—s).

To prove the claim, first note that bothand @ are feasible

Let F = [f1]-- - | fas] denote theN x M real matrix whose VECOrs, that is they satisfy the linear constraint = «. Let

columns are thel/ frame vectors{fi,..., fa} in RY. Let

o' = [vT wT]T be another feasible vector, that is/ = a.

G = [fi|---|fu] denote theN x M matrix whose columns We Will prove [|u/[|, > HE’L”p’ and [[u'[|, = |ull, if and only

are the canonical dual frame vectors. That is,
FGT =GFT =1y
FIG=GTF=P ,

(perfect reconstruction)

Recall the map we are interested in is:

M: RY/{+1,-1} = RM | M(z) = {\<x’fk>|}1gkgz\g8)

(projection onto the coefficients space)

if either v’ = u, oru’ = 4.
Indeed, we have’’ = u + d, whered € ker A. Due to the
special form ofA in (9), we obtain:

h
q= { "
Let J = supp(d) = {k ; di # 0} C {1,2,...,2M}, I =
supp(u), andly = I\ J, I =InJ,andl; = J\ I. Then

] , h&€ RanP (13)

whereRY /{+1, -1} = {i ; } is the set of classes of vectorssupp(u’) C Iy U, U I, and

Z obtained by identification of with —z, thatisz = {z, —z}.
Perfect reconstruction up to a sign of the vectds possible
if and only if M is injective.

Leta € RanM := {|FTz| ; x € RN}. We denote byA,
K, anda the 2M x 2M real matrices, respectively tia\/

vector, defined by
JoesT o] ee )

_ I I
| I-P —(I-P)

9)

For vectorsu € R™, v > 0 meansu, > 0 for every k. For

0 I

A 1 0

y € R™, we denote|y| the vector of absolute values of its

entries, |y| = (|yx|)i<k<m. We also letsupp(y) denote the
support of the vectoy, that issupp(y) = {k ; yr # 0}.

IIl. M AIN RESULT

Theorem 3.1:Let a € RanM. If M~!(a) contains only
one point, say{z}, then for every0 < p < 1 the following
optimization problem

argmin 4. llull, (10)
admits exactly two solutions: and & = Ku € R?M
independent ofp, with u = [t7 sT]T so thata = |t + s,
andz = {G(t — s), —G(t — s)}.

I/l = funlP + D fun+dilP + > 1delP (14)
kelg kel kels
Leto:{1,2,...,2M} — {1,2,...,2M} be the map (m) =

m+ M, if m < M, ando(m) = m — M for m > M. Let
i A{L2,...,2M} — {1,2,..., M} be the mapj(m) = m,
for m < M, andj(m) = m — M, for m > M. Because of
special form ofd, ky € J if and only if o(ky) € J, that is
o(J) = J. On the other hand, the choicefnds guarantees
that ko € I if and only if o(ko) ¢ I, thatisI No(I) = 0.
Thus if k € I; theno(k) € I; (althougho(l;) C I may
be strict) and|dy| = |dy k)| = |hj(m)|. Let Iy = o(1;) and
I =15 \ I51. ThusIy = Iy U Iy, and

7 = Yl Y e+ delP D deP Y [dil?

kelg kel kel k€lss

kel ke€lzo

For 0 < p < 1, we have|ug + dg|? + |dg|? > |ugk|P with
equality achieved if and only if eithet;, = 0, or dy, = —uy.
This proves that:

lu'll, = llull,, (16)

and thusu is a global optimizer for (10).

Conversely, if for som@ < p < 1 the optimization problem  The only remaining issue is to prove that|if’(|, = [|ul|,,

(10) admits at most two solutions, theévi—!(a) contains
exactly one point. {

then eitheru’ = u, or v/ = Ku. Equations (15) prove that

The proof is based on two key ingredients: one is thitherd, = —us, or dy = 0. Howeverd,, 7 0 for k € I, (by
decomposition of any real number into its positive and negatigenstruction), hencej, = —uy, for all k € I;. This means:

parts; the other ingredient is the inequality-b|? < |a|P+|b|?,

for all a,b € R and0 < p < 1, where the equality holds if

and only if one ofa, b is zero.

Proof

(1) Proof of=-.

Letx € M~!(a). Thusa = |FTz|. Lett, s be the positive,
and respectively the negative part Bf z, that is:

_f FTz), if (FT2)p>0

b= { 0 otherwise (1)
. 0 if (FTJ})k >0

k= { —(FTz)y otherwise (12)

[, = [[ull, if and only if I, = @ and for allk € I,
ur for kel
(W) =1 ur for kely=o(l) a7
0 otherwise

Lett', s’ be theM -components of/, u' = [(#')T (s")T]T. The
feasibility constraintdu’ = o implies thatt’ + s’ = a, and
(I-P)(t'—s')=0.Letd =t —s'.ThusPc' = ¢, hence’ €
Ran FT. On the other hand, sinck; = ) ando(I;) C I,
we have that'(I;) = I>. Hence,o (1) = 0?(1;) = I; and so
IyNo(Iz) = IpNI; = (). Also, by constructionyN I, = () and
it follows o (supp(u'))Nsupp(u’) = O. Thus|c'| = ' +5' = a.
This meansy’ = G¢' is in M~1(a). SinceM~*(a) contains

lally > llun + dil? + |del” — [url?] + D ldil” (15)



only one point,& = {x, —z}, it follows that eitheru’ = u, or
u’ = —u, which ends the proof of this way.

(2) Proof of <.

Fix a € M, and assum@&l~! has at least two classes, say
& = {x,—z} anda’ = {2/, —2'}. Consider again the positive
and negative parts of "z and FT2’, respectively, say, s,
andt’,s'. Sincexr # 2/ andz # —2', yet |[FTz| = |FT2'|,
it follows thatt’ # ¢ andt’ # s, yet [jul|, = [lu'|,, where
u=[tT sT]T andv’ = [t'T s'T|T. Thusu, Ku,u', Ku' are
distinct solutions of (10), which proves the converse.

Q.E.D.¢

Remark 1:Note that forp = 1 the result does not hold true.
Indeed, forp = 1 any feasible vector of (10) of positive
components has the sartfenorm: ||u||, = ||al|;.

Remark 2:If u is a feasible vector, that is it satisfids, =
«, thenKu is also a feasible vector, that is it satisfié&v =
«, In particular, ifu is a solution of (10) therkK« is also a
solution of same problem.

Remark 3:Note that we do not impose any positivity
constraint onu in (10). And yet, remarkably, the optimizer
turns out to have nonnegative components.

Remark 4:Connections betweeff optimization problems
and sparse signal representations have been studied in litera-
ture in the context of solving ICA type problems; see [8], [9],
[1].

Corollary 3.2: If M is injective, then for alla € Ran M,
and0 < p < 1, the optimization problem (10) admits only two
solutionsu and Ku so thatM~—!(a) = {G(t — 5),G(s — )},
whereu = [tT sT|T.

Corollary 3.3: If (10) admits at most one solution for all
a, thenM is injective.

IV. CONCLUSIONS

In this paper we study the reconstruction problem of a real
signal when only absolute values of its real frame coefficients
are known. In general one can expect at most to reconstruct
the original signal up to an ambiguity of one global sign. We
prove that this is the case if and only if &R optimization
problem, more specifically (10), admits exactly two solutions.
Furthermore, the solutions of this problem are directly related
to the original (and reconstructed) signal. This result reduces a
combinatorial optimization problem (where the combinatorics
are due to the exhaustive search over all possible sign combi-
nations) to ar/? optimization problem (albeit nonconvex).
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