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ABSTRACT

In this paper we present topology aspects in non-localization results. A well-known such no-go result is the Balian-

Low theorem that states the generator of a Weyl-Heisenberg Riesz basis cannot be well time-frequency localized.

More general, the statement applies to multi WH Riesz bases, or super frames as well. These results turn out

to be connected to non-triviality of a complex vector bundle. Another class of problem is related to optimality of

coherent approximations of stochastic signals. More speci�c, for a given de�cit (�� > 1), �nd the best Riesz sequence

generator optimal to respect to the mean square approximation error. A topological obstruction turns out to be

responsable for ill-localization of the optimal generator.
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1. INTRODUCTION

For �; � > 0 and g 2 L2(R), we denote by (g;�; �) the Weyl-Heisenberg set (or, WH set) de�ned by:

(g;�; �) = fgmn;�;� ; m;n 2 Zg ; gmn;�;�(x) = e
2�im�x

g(x� n�) (1)

We shall also use gmn to denote gmn;�;� when there is no danger of confusion. The WH set (g;�; �) is called frame

with bounds A;B > 0 if for every f 2 L2(R),

Akfk2 �
X

m;n2Z
jhf; gmnij

2 � Bkfk2 (2)

The WH set (g;�; be) is called Riesz sequence, or Riesz basis for its span (shorthanded by s-Riesz basis) with bounds

A;B > 0 if for every �nite secuence c = (cmn) (and by boundedness, for every square summable c 2 l2(Z2)),

Akck2 � k
X
mn

cmngmnk
2 � Bkck2 (3)

When (g;�; �) is simultaneously frame and Riesz sequence, it is called Riesz basis. A remarcable result due to

R.Balian and F.Chow (see,1 2) states that if (g;�; �) is an orthonormal basis for L2(R), then

Z
x
2jg(x)j2 dx

Z
�
2jĝ(�)j2 d� =1 (4)

where ĝ(�) = 1p
2�

R
e
�i�x

g(x)dx is the Fourier transform of g. Equation (4) roughly says the window (or generator)

g cannot be well localized in time-frequency domain. The original proof contained a slight gap, which was later �lled

in by Coi�man and Semmes (cf.3). An independent and interesting proof was later given by G.Battle in4 who also

extended the result to the more general case of Riesz bases. We also have to mention5 that presented a complex

vector bundle argument for a no-go theorem. The case of multi WH sets has been considered in8 where the authors

showed that at least one generator has to su�er of the time-frequency ill localization property. In9 we have obtained

a similar statement related to WH super frames. The initial Balian's proof shows, instead, another non-localization

form. This, so called amalgam BL theorem (see6) says that, if (g;�; �) is a Riesz basis generator, then neither g nor

ĝ cannot belong to the following amalgam space (called Wiener algebra):

W (C; l1) = ff : R! C ; f continuous and kfkW (C;l1) =
X
n2Z

sup
x2[n;n+1]

jf(x)j <1 g (5)
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The proof shows, as an intermediary result, the Zak transform of g cannot be continuous. The Zak transform is

de�ned by:

G(t; s) =
p
�

X
k2Z

e
2�ikt

g(�(s + k)) (6)

and is a unitary operator from L
2(R) to L2([0; 1]� [0; 1]) (for more details see7).

Separately and coming from a completely di�erent domain, in10 we have obtained a non-localization result for the

generator of an optimal WH Riesz sequence approximating a continuous-time stochastic signal. This result suggests

the following ansatz: generically, optimal WH sets are associated to ill-localized generators. Again, the proof shows

the Zak transform cannot be continuous. Recently, in,11 we have started exploring a broader class of optimality

problems related to signal approximation and encoding schemes.

The purpose of this paper is to explore the common link between these two classes of results from a topology

theory point of view. The organization of the paper is as follows: in section 2 we revisit the multi and super WH set

concepts mentioning the duality between them; next, in section 3 we present the continuous-time stochastic signal

approximation problem and its optimal solution; section 4 contains the complex vector bundle construction and some

of its properties; in particular it is shown to be non-trivial, and, as a consequence, in section 5 the nonlocalization

results for multi and super WH sets are obtained; conclusions are presented in 6 and are followed by the bibliograph.

The anlysis can be easily carried out in higher dimension spaces, but for the sake of clarity of notation we present

only the one-dimensional theory.

2. MULTI AND SUPER WEYL-HEISENBERG SETS

Consider a collection of p WH sets (g1;�; �),...,(gp;�; �). More generally we may consider WH sets with di�erent

time-frequency shift parameters, but for the purposes of this paper the equal-parameter case is su�cient. The multi

WH set denoted by (g1; : : : ; gp;�; �)m is simply the union of such sets:

(g1; : : : ; gp;�; �)m = fg1
m1n1;�;�

; : : : ; g
p

mpnp;�;�
; m1; n1; : : : ;mp; np 2 Z g (7)

The WH multisets may be a frame, Riesz sequence or Riesz basis for L2(R), whenever (2) respectively (3), or both,

hold for the union set de�ned in (7).

Another concept that can be used with the collection of p WH sets above is the super WH set. A super WH set

is denoted by (g1; : : : ; gp;�; �)s and represents the collection of p (ordered) WH sets. With a �xed ordering relation,

an auxiliary set is constructed, namely the pointwise direct sum of vectors:

G = fg
1
mn � � � � � g

p

mn ; m;n 2 Zg (8)

that \lives" in the p-direct sum of Hilbert spaces L2(R),

L
2;p(R) = L

2(R)� � � � � L
2(R) (9)

Accordingly, the WH super set (g1; : : : ; gp;�; �)s is said to be a super WH frame, Riesz sequence, or Riesz basis, if

the frame, Riesz sequence or Riesz basis conditions hold for G in L2;p(R).

A number of results are known about both sets. Among these we mention density and localization results that

parallel the corresponding single generator case. For density of multisets see,8,12 whereas a non-localization result

appeared in.8 For superset case see9 for non-localization results, and.13 See also14 and15 for a separate and

independent development of superset theory (called disjoint sets therein).

For the framework used in this paper (namely, uniform lattice and equal parameter case), the density and

localization results for multi and super WH sets turn out to be equivalent due to the following duality result (see16):

Theorem 2.1 (Duality of supercoherent WH multi and super sets). 1. The multiWH set (g1; g2; : : : ; gp;�; �)m
is a multi Riesz sequence if and only if the super WH set (g1; g2; : : : ; gp; 1

�
;
1
�
)s is a super frame.

2. The multiWH set (g1; g2; : : : ; gp;�; �)m is a multi Riesz basis if and only if the super WH set (g1; g2; : : : ; gp; 1
�
;
1
�
)s

is a super Riesz basis.



This result can be proved either by using von Neumann algebra representation techniques, by using the GNS

construction or by using the Wexler-Raz identity (see17). Using this theorem, it is clear the super set case reduces

to the WH multiset situation. Because of this, in the following section I consider only the latter case (i.e. the multi

set case). The density results mentioned before imply �� = p. Denote by � the followingCp�p-valued function over

the rectangle [0; 1)� [0; 1
p
):

� =

2
6664

G
1(t; s) G

2(t; s) � � � G
p(t; s)

G
1(t; s + 1

p
) G

2(t; s+ 1
p
) � � � G

p(t; s + 1
p
)

...
...

...

G
1(t; s+ p�1

p
) G

2(t; s + p�1
p
) � � � G

p(t; s+ p�1
p
)

3
7775 (10)

Then, the Riesz basis condition and bounds are given in the following theorem:

Theorem 2.2. (g1; g2; : : : ; gp;�; �)m is a multi WH Riesz basis with bounds A;B if and only if:

pA � �min(�
��) � �max � pB ; a:e: (t; s) (11)

where �min(�), �max(�) are the minimum, respectively maximum of the p real eigenvalues. This result has as a

corollary the following equivalent condition:

Corollary 2.3. Suppose (g1; g2; : : : ; gp;�; �)m is a multi WH Bessel sequence (i.e. the upper bound is satis�ed).

Then it is a multi Riesz basis as well if and only if:

jdet(�)j � A0 > 0 ; a:e: (t; s) (12)

for some A0 > 0.

As mentioned before, the extension of the Balian-Low theorem to the multiset case has been done by M.Zibulski

and Y.Y.Zeevi in8 where they obtained the following result (here I slightly extend their statement to cover both the

amalgam BL theorem and superset case):

Theorem 2.4. Assume (g1; g2; : : : ; gp;�; �)m, or (g
1
; g

2
; : : : ; g

p;�; �)s is a multi, respectively super WH Riesz basis

for L2(R). Then at least one generator is ill-localized in the following sense: Assume gk is the generator in question.

1. gk cannot belong to the following space:

H
1;1 = ff 2 L2(R) j kfk2

H1;1 :=

Z
(1 + x

2)jf(x)j2 dx +

Z
�
2jf̂(�)j2 dx <1g (13)

2. Neither gk, nor ĝk can belong to the Wiener algebra W (C; l1) de�ned by (5).

This theorem follows by a standard technique from the following lemma:

Lemma 2.5. Assume (g1; g2; : : : ; gp;�; �)m is a multi WH Riesz basis. Then for at least one 1 � k � p, Gk, the

Zak transform of gk, is discontinuous.

We analyze in Section 5 the topological reason of this result and its consequences.

3. OPTIMAL CONTINUOUS-TIME STOCHASTIC SIGNAL APPROXIMATIONS

Assume f is a stationary continuous-time stochastic signal of zero average and known autocovariance function R(t).

Thus:

E[f(t1)f(t2)] = R(t1 � t2) (14)

E[f(t)] = 0 (15)

We want to approximate f by a coherent expansion of the form Sg1;g2;�;�f =
P

mn
hf; g1mnig

2
mn. To distinguish

among di�erent approximation solutions, we consider a measure of the approximation error. Obviously this question

is trivial when (g1;�; �) is a frame and (g2;�; �) a dual. In general we are interested in the case when both (g1;�; �)

and (g2;�; �) are incomplete sets, such as s-Riesz bases. Consider now a nonnegative bounded summable weight



w � 0, w 2 L1(R)\L1(R). Typical such weights are characteristic functions of intervals. Then the weighted L2(R)

norm of the approximation error measures how well Sg1;g2 ;�;�f approximates f and its expectation is a measure of

the stochastic approximation of the continuous-time signal f by the WH pair (g1; g2;�; �):

Jca(g
1
; g

2;�; �; w;R) =

Z 1

�1
E[jf(x) � Sg1;g2 ;�;�f(x)j

2]w(x) dx (16)

The problem is to �nd the best WH pairs of s-Riesz bases (g1; g2;�; �) that minimizes (16), i.e.

inf
(g1;g2;�;�) pair of s�Riesz bases

Jca(g
1
; g

2;�; �; w;R) (17)

In18 and10 we have analyzed this problem in details and obtained its optimal solution for the rational case, namely

when �� = p

q
, for (p; q) relatively prime. The interested reader can �nd in the aformentioned papers (and in11)

computational details. Here we give only the end result. First we need to introduce several objects.

First, for a generic window g, and its Zak transform G, we denote by:

�(t; s) =

2
66664

G(t; s) G(t+ 1
q
; s) � � � G(t+ q�1

q
; s)

G(t; s+ q

p
) G(t+ 1

q
; s+ q

p
) � � � G(t+ q�1

q
; s+ q

p
)

...
...

...

G(t; s+ (p � 1) q
p
) G(t+ 1

q
; s+ (p � 1) q

p
) � � � G(t+ q�1

q
; s+ (p� 1) q

p
)

3
77775 (18)

and obtain accordingly �1 and �2. Let E(t) 2 Cp�p, Q;D 2 Cq�q be de�ned by:

E(t) =

2
6664

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

...

e
�2�iqt 0 0 � � � 0

3
7775 ; Q =

2
666664

0 0 � � � 0 1

1 0 � � � 0 0

0 1 � � � 0 0
...

...
...

0 0 � � � 1 0

3
777775

(19)

D =

2
6666664

1

e
�2�i 1

q

e
�2�i 2

q

. . .

e
�2�i q�1

q

3
7777775

(20)

Then the standard quasiperiodicity relations of Zak transform turn into:

�(t+
1

q
; s) = �(t; s) �Q ; �(t; s +

1

p
) = e

�2�in0tE(t)r0 � �(t; s) �Dn0 (21)

where (r0; n0) are coprime factors of (q; p), i.e. r0q + n0p = 1.

Let us denote by

!(s) =
X
k

w(�(s + k)) (22)

and by W (s) the following 1-periodic diagonal matrix valued function:

W (s) =

2
66664

!(s) 0 � � � 0

0 !(s + q

p
)

. . . 0

...
. . .

. . .
...

0 � � � 0 !(s + (p � 1) q
p
)

3
77775 (23)



Finally, denote by:

�r(t) =
X
m

e
2�imqt

R(
mp+ r

�
) (24)

and by M (t) the following 1
q
-periodic Toeplitz self-adjoint matrix:

M (t) =

2
66664

�0(t) ��1(t) � � � ��(p�1)(t)

�1(t) �0(t)
. . . ��(p�2)(t)

� � �
. . .

. . .
...

�p�1(t) �p�2(t) � � � �0(t)

3
77775 (25)

Note also the following properties:

W (s +
1

p
) = E(t)r0W (s)E(t)�r0 (26)

M (t) = E(t)M (t)E(t)� (27)

With these notations, and � = [0; 1
q
]� [0; 1

p
], the criterion Jca becomes:

Jca = �q

Z Z
�

tracefW (s)(I �
1

p
�2(t; s)�1�(t; s))M (t)(I �

1

p
�1(t; s)�2�(t; s))g (28)

and the optimal solution �1
o
, �2

o
is parametrized by:

�1(t; s) = W (s)1=2V (t; s)L�(t; s) (29)

�2(t; s) = W (s)�1=2V (t; s)L�1(t; s) (30)

where L(t; s) is an arbitrary q�q invertible matrix so that sup(t;s)kL(t; s)k <1, sup(t;s)kL
�1(t; s)k <1, and V (t; s)

is a p� q matrix whose columns are eigenvectors of

R(t; s) =W (s)1=2M (t)W (s)1=2; (31)

corresponding to the largest q eigenvalues, so that V �(t; s)V (t; s) = Iq. Examples of such functions are given in,10

and.18 It turns out these exemples exhibit a speci�c discontinuity property that has been proved in10 for a special

class of stochastic signals. In section 5 we generalize non-localization results obtained in.10

4. THE COMPLEX VECTOR BUNDLE

The new element of this paper is a new vector bundle and associated exterior forms algebra that is going to play an

essential role in the following derivations.

Let �� = (Cp�R2
; ��;R2) be the trivial complex vector bundle over the 2-dimensional (Euclidian) plane R2 whose

�ber is Cp, and �� : Cp�R2 ! R2, the canonical projection (v; t; s) 7! �(v; t; s) = (t; s). This vector bundle is trivial

in the sense that the base manifold, R2, admits a global parametrization and coordinate system, which is simply

R�R! R2, so that globally, the total manifoldCp �R2 is di�eomorphic to Cp �R�R. On this vector bundle,

consider the following equivalence relation:

(v; t+ 1; s) � (v; t; s) (32)

(v; t; s+
1

p
) � (e�2�in0tE(t)r0v; t; s) (33)

Now we denote by � = ��= � the quotient bundle obtained by identifying the equivalent pairs. The base manifold

becomes [0; 1) � [0; 1
p
) � T2 instead of R2, and the total manifold is denoted by Cp. The new projection map

is denoted � : Cp ! T2. Thus � = (Cp; �;T
2). Consider i : �� ! � which associates to every (v; t; s) 2 ��, the

corresponding equivalence class via (32,33) whose representant is in Cp� [0; 1)� [0; 1
p
). Any map  : Cp ! V (some

space V ), extends naturally to a map � : Cp �R2 ! V through � =  � i, that is a �-invariant map over Cp �R2,



that is � (v; t+ 1; s) = � (v; t; s) and � (v; t; s+ 1
p
) = � (E(t)r0v; t; s). Denote by F(T2;C) the ring of complex valued

continuous functions over the 2-torus T2.

Next consider the F(T2;C)-module X(�) of sections of �. A section v is de�ned as a continuous map v : T2 ! Cp

so that � � v = 1T2 is the identity of T 2. We de�ne also the more general La-sections, where we require only that

the components of v are in La(T2;C) and � � v = 1T2 . We denote by Xa(�) the L
1(T2;C)-module of La-sections.

The rational behind this vector bundle construction is that each column of � in (10) de�nes a L2-section of � for

n0 = 0; r0 = 1, whereas if g 2W (C; l1), then the sections are continuous, and thus in X(�). For the purposes of this

paper, we are going to consider only those WH sets whose Zak transforms are continuous. Hence we deal with X(�)

only. Thus, general properties of this vector bundle yield several results for WH multi and super sets.

Consider now the algebra of exterior forms associated to �. This is constructed as follows. Each �ber is isomorphic

to Cp. Let �k(Cp) be the complex vector space of k-forms over Cp and �(Cp) = �
p

k=0�
k(Cp) the exterior algebra

over Cp. Then the exterior algebra of ��, �(��), is given by the F(T2;C)-module of continuous sections of the trivial

bundle (�(Cp); ��;R2). The equivalence relations (32,33) induce on exterior forms of �� the following relations:

(!; t+ 1; s) � (!; t; s) ; (34)

(!; t; s+
1

p
) � (�; t; s) ; �(v1; � � � ; vk) = !(e2�in0tE(t)�r0v1; � � �e

2�in0tE(t)�r0vk; ) (35)

for all omega 2 �k(Cp). We denote by �k(�) the F(T2;C)-module thus obtained, and �(�) = �
p

k=0�
k(�), where, by

convention, �0(�) := F(T2;C). Note that any exterior di�erential form in �(�) can be lifted to �(��) and extended

to the whole 2-plane R2, via (34,35).

To a given WH set (g;�; �) with �� = p, we associate the following exterior 1-form over �� and then, since satis�es

(34,35), also a 1-form over �:

!j(t;s) = G(t; s)dz1 +G(t; s+
1

p
)dz2 + : : :+G(t; s+

p� 1

p
)dzp (36)

(where the bar denotes the complex conjugation). One can easily check that ! satis�es (34,35) for k = 1, n0 = 0 and

r0 = 1, and thus is corresponds as well to a 1-form in �1(�). The usefulness of this construction lays in the following

result:

Theorem 4.1. Assume �� = p and g
l
; h

l are generators whose Zak transforms are continuous (for instance in

W (C; l1)), 1 � l � q.

1. Assume (g1; : : : ; gq;�; �)m is a WH multi Bessel sequence. Denote by !1; : : : ; !q 2 �1(�) their associated

exterior 1-forms as constructed before. Then (g1; : : : ; gq;�; �)m is a WH multi Riesz sequence if and only if:

!1 ^ : : :^ !q 6= 0 ; 8(t; s) 2 T2 (37)

Moreover, given an exterior q-form 
 2 �q(�), it corresponds to a WH multi Riesz sequence if and only if dimker
 =

p� q, where

ker
 = fv 2 X(�) j 
(v; v2; � � � ; vq) = 0 ; 8v2; : : : ; vq 2 X(�)g

2. Assume (g1; : : : ; gq ;�; �)m and (h1; : : : ; hq;�; �)m are two multi WH riesz sequences. Denote by !1; : : : ; !q,

respectively �1; � � � ; �q their corresponding exterior 1-forms. Then, the two multi Riesz bases have the same span if

and only if there is a f 2 �0(�) = F(T2;C), f(t; s) 6= 0 for every (t; s) so that

!1 ^ : : :^ !q = f �1 ^ : : :^ �q (38)

Moreover, they are unitary equivalent if and only if jf j = 1.

3. Assume (g1; : : : ; gq; 1
�
;
1
�
)s is a WH super Bessel sequence and denote by !1; : : : ; !q their associated 1-forms.

Then (g1; : : : ; gq; 1
�
;
1
�
)s is a WH super frame if and only (37) holds true.

4. Assume (g1; : : : ; gq; 1
�
;
1
�
)s and (h1; : : : ; hq; 1

�
;
1
�
)s are two WH super frames. Denote by !1; : : : ; !q; �1; : : : ; �q

their associated 1-forms. Then the two WH super frames are equivalent, in the sense that their direct-sum frames

are quivalent as frames in L2;q, if and only if (38) holds true form some nonzero f in F(T2;C).



Proof 1. The proof of this result uses the following remarks: Denote by � the p�q complex matrix constructed as

in (18) for (g1; : : : ; gq;�; �) and by � the corresponding matrix for (h1; : : : ; hq;�; �). Then condition (37 is equivalent

to rank(�) = q for every (t; s). Use next the continuity of G to deduce �rst part of 1. For the second part, note that

whenever dimker
 = q, there are !1; : : : ; !q 2 �1(�) so that 
 = !1 ^ � � � ^ !q .

2. Note (38) is equivalent to Ran� = Ran�, or, the fact there is an invertible and bounded L so that � = �L.

Note next the q-form associated to � is det(L)�1 ^ : : :^ �q. The statement follows from the previous remarks.

3. The super frame case reduces to the multi Riesz sequence, through Theorem 2.1. Then apply 1.

4. Again, equivalence of super frames is equivalent to multi Riesz sequences having the same span (19). Then

apply 2. 2

5. NON-LOCALIZATION RESULTS

In this section we present the connection between the non-localization results stated in the introduction and the

vector bundles introduced above.

First we consider the Balian-Low type phenomenon. We want to analyze the statement of Lemma 2.5. Theorem

4.1 implies that (g1; : : : ; gp;�; �)m with �� = p is a Riesz basis if and only if it corresponds to a nonvanishing exterior

p-form of �p(�). Thus the no-go statement of Lemma 2.5 implies that all continuous sections of (�p(Cp); �T2) have

to vanish at least in one point of the 2-torus T2. In turn, this means that globally there are no p sections in X(�)

so that at every point of T2 to form a basis in the local �ber of �. This statement represents (by de�nition) the

non-triviality condition of �. Thus we obtained:

Theorem 5.1. The vector bundle � is non-trivial. Moreover, the nontriviality of this vector bundle is precisely the

reason of the amalgam BL statement as stated in part 2 of Theorem 2.4.

Let us now consider the optimization problem of Jca. As shown by (29) and (30), the optimizers of this problem

depend strongly on the class of invariant spaces of R(t; s) from (31). Let us �rst analyze the case when W (s) = I.

Then, by (27), R(t; s) = E(t)R(t; s)E(t)�. The eigenvectors of R(t; s) = M (t) coincides with the eigenvectors of

E(t). An explicit computation shows that:

xr =
1

p

�
1 "r "

2
r � � � "

p�1
r

�T
(39)

are the eigenvectors, for 0 � r � p � 1, where "r = e
�2�i q

p
(t+ r

q
) are the pth root of e�2�iqt. Moreover, we can

explicitely compute the corresponding eigenvalue. A little algebra shows that:

�r(t) =
X
l2Z

e
2�il q

p
(t+ r

q
)
R(

l

�
) (40)

Now assume the set t so that the qth eigenvalue of M (t) is degenerate is discrete. Let Ir be the q subset of

f0; 1; : : : ; p�1g of indices corresponding to the largest q eigenvalues ofM (t). Then, if V (t; s) is continuous, necessarily:

V (t; s) = [xr1 xr2 � � � xrq ]

with r1; � � � ; rq 2 Ir . But this does not satisfy the periodicity relation (21), namely:

V (t+
1

q
; s) 6= V (t; s)Q

The only solution is that V (t; s) cannot equal the projection corresponding to the largest eigenvalues for all t, unless

it loses the continuity. In particular we proved:

Theorem 5.2. Assume W (s) = I and the qth eigenvalue ofM (t) is degenerate only for a �nite number of points in

the interval [0; 1
q
]. Then the optimal windows g1; g2 and their Fourier transforms ĝ1, ĝ2 cannot be in W (C; l1).

Now let us consider the general case for W (s). The approach we use here is the following. Consider:

Ru(t; s) = e
u

2
log W (s)

M (t)e
u

2
log W (s)



where 0 � u � 1. Clearly R0(t; s) = M (t) and R1(t; s) = R(t; s) and Ru(t; s) depends continuously on u. It follows

the spectrum will change continuously with (u; t; s). In particular, unless a \
at" are appears (an open domain in

(t; s) domain where the qth eigenvalue is degenerate) the initial eigenvalues V (t; s) starts with, at some particular

(t; s), will not be the same to the eigenvalues at (t+ 1
q
; s), and hence cannot be maximal. Again the consequence of

Theorem 5.2 is obtained.

6. CONCLUSIONS

In this paper we have constructed several vector bundles associated to Weyl-Heisenberg sets. First we have charac-

terized multi WH Riesz sequences and super frames as well as their equivalence, in terms of some exterior forms.

In particular, those sets correspond to nonvanishing and q-dimensional kernel exterior forms; moreover, the WH

super frame sets are equivalent, and WH multi Riesz sequences have the same span, if and only if the corresponding

exterior forms are dependent at every point of the 2-torus. The non-localization phenomen as known in the amalgam

verion of the BL theorem turned out to be related to the nontriviality property of the aformentioned vector bundles.

Next we analyzed the (non)localization property of some optimal generator. To do this, we have considered spec-

tral properties of the operator R(t; s). It turned out there cannot be a continuous invariant projector corresponding

to the largest eigenvalues of R(t; s).
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