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ABSTRACT

In this paper we present an abstract theory of frame redundancy. More specifically we define the frame measure
function as a representation of the set of frames indexed by the same index set, in the set of continuous real-valued
functions over a compact space, that is compatible with a special partial ordering introduced in this paper, it is
normalized and it is additive with respect to orthogonal superframes. A frame measure function is as relevant as
the equivalence and partial ordering relations are. Thus we will spend some time in trying to convince the reader
of the relevance of our new proposed equivalence relation. Here we are going to present only basic properties of
these concepts.
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1. INTRODUCTION

The notion of frame has been introduced by Duffin and Schaefer in their seminal paper.'®> Since then many
studies were published and the theory enlarged and advanced so today it covers a respectable number of fields
all over mathematics, engineering and physiscs. In this context, we refer the reader to the expository papers,'?

21 or more recently.?

3

For a Hilbert space H, a (Hilbert) frame indexed by a countable index set I is a set of vectors F = {f; ; i € I}
of H such that there are two positive numbers A, B > 0 so that for any vector x € H,

Azl <3~ Kz, fi)l* < Bllz|)? (1)

el

Directly from the definition one can see that F is necessary a complete system in H (that is, its linear span is
dense in H). Indeed, if = is a vector orthogonal to the closure of the span of F, then the sum in (1) vanishes,
which makes the norm of x zero, and then z vanishes as well. In most of the cases F is an overcomplete set,
meaning that one can remove some subset and leave the remaining set complete, or even frame (,5¢). The only
case when this cannot happen is when F is a Riesz basis. A Riesz basis is a complete set F = {f; ; i € I} so
that for two numbers A, B > 0 and every finite sequence of complex numbers ¢ = (¢;);er,

AY lal? < 1) efil®> < BY el (2)

icl icl i€l

It turns out a Riesz basis is also a frame and the constants A, B in (1) can be chosen as in (2). When the
set F satisfies only (2) but is not necessarily complete, we say F is a Riesz basis for its span, or a Riesz basic
sequence, or a s-Riesz basis. Similarly, F is a frame for its span when (1) holds true for all z in the closure of
the linear span of F. The frame property represents a special case of completeness, whereas Riesz basis for its
span corresponds to a special case of linear independence. Riesz basis property represents the intersection of
both frame and Riesz basis for its span properties.

All these facts are well-known in literature, and many applications (in signal processing, for instance) were
presented. Both the theory and applications states that frames are in general redundant sets, and therefore
vectors of the Hilbert space are not uniquely decomposed in terms of the frame set vectors. However there
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was no attempt to quantify how “redundant” a frame set is. The purpose of this paper is to present a formal
theory of frame redundancy and connect it to some areas of operator theory, topology, information theory, signal
processing, and representation theory.

To fix the notations, in this paper we consider I a countable index set, and frames are always sets of vectors
of some Hilbert space (not necessarily the same) indexed by I, where the indexing does matter. Because of
tradition we write F = {f; ; ¢ €}, however by a frame we will always mean a map f : I — H, so that
F ={fi = f@i); i € I} satisfies (1) for some A, B > 0. The set of all frames index by I is denoted F[I]. The
numbers A, B in (1) are called frame bounds. A frame is called tight if we can choose equal frame bounds. When
the frame bounds can be set to one, F is called Parseval frame (or normalized tight frame).

For a frame F = {f;;i € I} for H, we define the following operators: the analysis map is the bounded linear
map T : H — [*(I) defined by T'(z) = {(z, f;)},.;; the synthesis map is the adjoint of T', T* : I*(I) — H,
T*(c) = 3,1 cifi; the frame operator defined by S: H — H, S =T*T, x + S(x) = >, ;(z, fi) fi; the Gramm
operator defined as G : 12(I) — 12(I), G =TT*, ¢ — (G(c)); = > jerfis fi)ej. The canonical dual frame of F is
the frame F = {f; ; i € I} defined by f; = S~1f;. In general, we call a frame G = {g; ; i € I} in H dual of F if

for any z € H,
D g =D (w9 fi = (3)
i€l icl
In particular, the canonical dual frame is a dual frame. Equation (3) says a pair of frame and one of its duals gives
a discrete resolution of the identity of the Hilbert space where the frame lives. The canonical dual frame gives
more information about the frame than just a discrete resolution of identity. Let us denote by E the range of T’
in [2(I). We call E the range of coefficients. The lower frame bound guarantees that F is closed. Let us denote
by P the orthogonal projection onto E in {*(I). In the canonical basis (;);c; of 1*(I), 8; = (8; ) jer, where §; ;
is the Kronecker symbol (1 for ¢ = j, and 0 otherwise), the projection P has the following representation (whose
validity is easily verifiable by the reader):

Pij = (P5;,6;) = (fi f3) = (Fi, £5) (4)

Note if F is a Riesz basis, then the range of 7" is the whole space [2(I), the projection P becomes the identity of
[2(I), and the canonical dual has the biorthogonal property (f;, fj) =, ;. In this case (and only in this case) the
canonical dual is the unique dual of F. In general there may be more dual dual frames. The operator in [?(I)
whose matrix elements in the canonical basis (d;);e; are the inner product between the frame vectors and the
dual frame vectors, is, in this case, a nonorthogonal projection. The only case when this projection is orthogonal
is when the dual frame is the canonical dual frame.

Another object constructed from a frame is the associated Parseval frame F# = { fz# ; © € I} defined by
fi# = §~1/2f;. Indeed, one can easily prove that F# is a Parseval frame. The coefficient ranges of the canonical
dual frame and associated Parseval frame coincide with the range of coefficients of F. Note the entries of P in
the canonical basis (d;);cr can be computed also through

Py = (1) (5)
In particular the diagonal elements are given by
P =717 = (£, F) (6)

and are real between 0 and 1.

Let us describe now the approach. Our approach is inspired by the Cantor cardinal numbers theory (which,
in turn, owes it to Gottlob Frege; see for instance!”). The cardinal number is defined as the class of equivalent
sets, where two sets are equivalent if there is a bijection mapping one into the other. Moreover, injective and
surjective maps define order relations on equivalent classes of sets. A similar approach was taken by Murray
and von Neumann in their comparison of projection theory. Two projections in a von Neumann algebra are
equivalent if there is a partial isometry of the algebra that maps the range of one projection onto the range of
the other projection. Then, in a finite algebra, equivalent classes of projections are characterized uniquely by the



center valued trace. With these two models in mind, our approach is as follows: first we have to define equivalent
frames, and consider the class of equivalent frames; at the same time we have to introduce a partial ordering
compatible with the equivalence relation, in order to compare (some) classes of frames. Once this is done, the
actual comparison is performed through a representation theory model. More specifically we define the frame
measure function as a representation of F[I] in the set of continuous real-valued functions over a compact space,
that is compatible with the partial ordering introduced before, is normalized and satisfies a special additivity
property. A frame measure function is as relevant as the equivalence and partial ordering relations are. Thus we
will spend some time in trying to convince the reader of the relevance of our new proposed equivalence relation.
The rational for our definition comes from both analytic and practical reasons. We try to extend the clear
meaning of redundancy in the finite dimensional case to the infinite dimensional setting. If the frame set has
M vectors in the N-dimensional complex space C¥, then the redundancy is defined as % Then what we need
to do is to find the relevant transformation properties if the frame sets that leave this ratio constant. As we
will argue later, finite permutations and arbitrary change of phase are among the relevant transformations. Also
an information theory argument suggests how to define equivalent classes when the previous ratio is properly
connected to the trace of the projection P. All these is done in Section 2. Next, the frame measure function is
defined in Section 3, as mentioned before. The rest of the section, is spent on proving several properties of these
frame measure functions.

A similar theory can be made to measure Riesz bases for their span. A future paper will address this issue.

2. FRAME ORDERING

In this section we revised the commonly known frame equivalence relation and argue about some limitations
this relation has. To address those problems, we introduce a new equivalence relation that will constitute the
foundation of our comparison theory.

2.1. The standard equivalence relation
Let F1,F3 € F[I] be two frames for, respectively Hy,Hs. Then

DEFINITION 2.1. We say F1 ~ Fa if there is a bounded invertible operator S : Hy — Hy such that Sf} = f?
for every i € I. This is an equivalence relation as can be easily proved (namely it is reflexive, symmetric and
transitive). Moreover, it admits the following geometric interpretation:

Theorem 2.2 (>1). Consider F1,F> € F[I] and Py, P> their associated orthogonal projections onto the
coefficients range. Then F1 ~ Fo if and only if P, = Ps.

What this result says is that two frames are equivalent ~ if and only if they span the same range of coeffi-
cients. Notice that a frame functional calculus associated to some frame F € F[I] would always produce frames
equivalent to F. By frame functional calculus we mean frames of the form G = {g;; g; = ¢(S) f;} for some Borel
measurable function ¢ so that ¢([A4, B]) C [C, D] C (0,00), with A, B the frame bounds of F. In particular,
the canonical dual frame (obtained for ¢(z) = 1/z) is ~ equivalent to the original frame F. By the previous
theorem, all the frames obtained through functional calculus from F span the same space of coefficients in 12(I).

For our purposes, this equivalence relation is not sufficient. In other words, we need to enlarge the class of
equivalent frames beyond the rigid constraint Theorem 2.2 poses on the range of coefficients.

The following remarks present two properties we would like equivalent frames to have, but the ~ equivalence
relation fails to have.

REMARK 2.3. Let F € F[I]. Note that by arbitrarily changing the sign of each vector we obtain ~ nonequivalent
frames. However we would like the new frame sets thus obtained to remain ~ equivalent to F. More generally,
for an arbitrary set of phases (¢;)icr construct G = {g; = €¢'%i f;;j € I}. Note G’s remain frame, but in general
they are no longer ~ equivalent to F. We would like the new equivalence class of F to contain all the G’s obtained
this way.

REMARK 2.4. Another operation we would like the class of equivalent frames to possess is finite permutation.
In general, for F € F[I] and w: I — I a finite permutation, gc = {g; = fr();1 € 1} is no longer ~ equivalent
to F. We will require the new equivalency class to be invariant to this kind of transformation.



Beside these two classes of transformations the new equivalence classes have to be invariant to, there is
another criterion in comparing two frames that we want to incorporate in the new theory. This is furnished by
a stochastic signal analysis that generalizes the arguments presented in.!?

First note that there is no lack of generality by restricting the analysis to normalized tight frames since
any frame is ~ equivalent to its associated normalized tight frame, and by transitivity, once a new equivalence
relation is introduced on normalized tight frames, it immediately extends to arbitrary frames. Consider F € F[I]
a normalized tight frame. Assume the span H of F models a class of signals we are interested to transmit using
an encoding and decoding scheme based on F as in Figure 1. More specific, a “signal” (that is a vector) x € H
is “encoded” through the sequence of coefficients ¢ = {(z, f;)},; given by the analysis operator T': H — 12(I).
These coefficients are sent through a communication channel to a receiver and there they are “decoded” using a
linear reconstruction scheme & = 3. _; d; f; furnished by the reconstruction operator 7. Often it happens the
transmitted coefficients ¢ = (¢;);er are perturbed by some (channel) noise. Hence the received coefficients d # c.
We assume an additive white noise channel model, meaning the transmitted coefficients are perturbed additively
by unit variance white noise, that is

E[n;] = 0 (8)
E[nn;] = 6, (9)

where E is the expectation operator. Then the reconstructed signal £ has two components, one due to the
transmitted coefficients Zz ¢;fi = = and the other due to the noise ¢ = Zl n;fi;. We analyse the noise due
component €. Since its variance is infinite in general (this, in turn, implies some convergence problem in defining
>-:nifi!), we consider the case that only finitely many coefficients are transmitted, say a finite subset I,, C I.
Then the average variance per coefficient of the noise-due-error is defined by:

E[le,|?
o Elles?
£

(10)

where
en = Z n; fi (11)
icl,
Using the assumptions (8),(9) we obtain

1

=7 >Nl (12)
n 1€,

Since || fi|| < 1 it follows a,, < 1. Note that if instead of F an orthonormal basis was used, the average noise due

error variance per coefficient would have been

by =1 (13)

Hence a, gives a measure of how much the channel noise variance is reduced when a frame is used instead of an
orthonormal basis. In channel encoding theory, the noise reduction phenomenon described before is attributed
to the redundancy a frame has compared to an orthonormal basis (see for instance!?). Hence, any measure of
redundancy has to be connected to these averages a,, from (12).

We end this subsection with a few comments on topology of frames. The correspondence between ~ equiva-
lence and orthogonal projections in B(I?(I)) induces a quasi-metric on F[I] (respectively a metric on F[I]/ ~):

d(fl,fg) = ||P1 — P2|| , fl,fQ c f[[] (14)

where P; = TlTl*, P, = T2T2* are the orthogonal projectors onto the coefficient spans associated to the two
frames. In turn this quasi-metric defines a topology on F[I] denoted by 7. A basis of open sets in 7 is given by
{G € F[I] | d(G,F) < e} for every € > 0 and F € F[I]. Thus a map F : F[I] — X from F[I] to a topological
space (X, X) is continuous at F € F[I] if and only if for any neighborhood U € ¥ of F(F), there is an € > 0 so
that for any G € F[I] with d(F,G) < e then F(G) € U.
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Figure 1. The Transmission Encoding-Decoding Scheme used to suggest the importance of averages (12).

2.2. The New Equivalence Relation

Based on the remarks and discussion presented in the previous subsection, we define a new equivalence relation
as follows. First fix a sequence of covering, nested and finite subsets of I, (I,),>0, that is

IhCchC-C I, ClyyC--CI (15)
1| < oo (16)
Upsol, = I (17)

DEFINITION 2.5. Two frames Fy,Fa € F[I| are said ~ equivalent with respect to (I, )n>0 if

lim —— SO (U ) — (72, 72)) =0 (18)

From this point on, we assume the same sequence (Ip,)n>0 of subsets of I, unless otherwise indicated. To
simplify the notation, we shall drop the explicit mention of the sequence (I,,)n>0 in ~ equivalence. Thus we
shall simply say F; and F, are &~ equivalent, or F; = Fo, if (18) holds true.

It is a simple exercise to show that =~ is a veritable equivalency relation, that is F ~ F (reflexivity),

FirnFo=Fr~F (symmetry) sand Fi = Fo ANy = F3 = F1 =~ F3 (transitivity).
Next, note this equivalence relation solves the “desired” properties mentioned in the previous section. Firstly,

if 71 ~ Fy then Py = P, (by Theorem 2.2), hence (f!, f1) = (f?, f?), for every i € I, hence (18) holds true, hence
F1 ~ F1. Secondly, (f;, fl> is invariant to an arbitrary change of phase of vectors f, since f; = S~1f; would
change by the same phase. Thus = equivalency classes are invariant to arbitrary change of phase. Thirdly, for
a finite permutation, the average \I_ln\ Y ie I, (fis fz) remains the same for n > N, for sufficiently large N. Hence
~ equivalency classes are invariant to finite permutations of the frame sets. Finally, condition (18) requires the
averages of the type (12) associated to the two frames F;, F» should behave the same. The following result

whose proof is immediate makes more precise this statement:
Proposition 2.6. F; ~ F» if and only if, for any sequence (ny)k>o0 so that v := limg_, ﬁ dier (ff rh
> . -

exists, the corresponding limit of averages associated to Fy exists as well and equals 7y, that is

lim o S (727 = (19)

k—oo |Ink| icly,
To simplify the notation, we denote by a,,(F) the average:

an(F) ! > (i fi) (20)

] iel,



Since for any frame 0 < (f;, fl) < 1, it follows 0 < a,,(F) < 1, for every n.

The following result shows that every & equivalence class contains frames of a special form, namely frames
made of union of an orthonormal basis with a number of zero vectors. It is important to note that the indexing
and particular choice of (I,),>0 does matter. Later on we shall see conditions on the nested sequence (I, )n>0
to produce the same classes of equivalence.

Theorem 2.7. Let F € F[I] be a frame index by I. Then there are two frames G1 = {g};i € I}, Go = {g?;i € I}
both ~ equivalent to F with the following properties:

1. For every i, g} is either zero, or g} belongs to an orthonormal set B, so that for any i # j if g} # 0,
gj # 0, then g} # gj;

2. For every i, g? is either zero, or g2 belongs to the orthonormal set B, so that for any i # j if g2 # 0,
g; # 0, then g7 # g3

3. |lgtll < 1lg2|l, that is, when g} # 0, then necessarily g? # 0;

4. The following inequalities hold true:

0(G) < an(F) < an(Ge) (21)
an(]:) - an(gl) < |I—i| (22)
an(Ga) — an(F) < |I—1| (23)

The proof of this result is fairly simple, but since we will use this result many times in the following, we
include it here.

Proof

The proof is constructive and is as follows. Assume an enumeration of I k € N — i € [ is fixed so that
|T,| < k < |ILyt1] for iy € Inyq \ I,. Assume B = {e; k > 1} is an orthonormal set. We constructive inductively
G1,Ga. Let |z], be the largest integer smaller than or equal to x, and [2] be the smallest integer larger than or
equal that z. Initialization. Assume N is the first integer so that Iy # ). Set GF =0and G5 =0, for 0 < k < N.
Set sV = >, (fior fid ], sV = [Yicr, (fis fi)]. Hence ﬁsy < an(F) < ﬁsf Set GV = {g};i € In},
where gj, = e; for 1 <k < sV, and g} =0 for s¥ +1 < k < |Iy|. Similarly, set G = {g7;i € In}, where
gfk = ¢y for 1 Skgsf, andg;"k :Oforsf—i—l <k<|In|

Assume G} and G§ are defined, for some n > N. Set 5" = LZieInH(fi,fi)j, sttt = (ZielnH(fi,fiﬂ.
Then:

1 1
ST < a4, (F) < st (24)
|In+1| ‘In+1|

1 1
apiq(F) — ——gt1 < 25
i ey Tora] (2)

1 1
s —a F 26
T e R T vy (26)

Construct g;”l = {g};i € I,+1 \ I,,} and QSH = {g%;i € In+1\ I,} as follows: gilk = ¢y for s < k < s™T1
91'1;9 =0for "™ 1<k < |l 1]; gfk = ey, for s <k < si“, g?k =0 for sﬁ“ +1<k< |l
Now set G1 = U,>0G7, and Gy = Uy, >0G5.

We claim Gy, Gs satisfy the conclusions of the statement. Indeed, each of the two sets consists of an or-
thonormal basis B and a number of zero vectors. Hence both are normalized tight frames for H = span(B).
Since s™ < 7 it follows ||gi| < [lg?]|. Next, (21-23) follow from (24-26) by noting that a,(G1) = ﬁs" and

an(G2) = ﬁsﬁ



O

REMARK 2.8. The two frames G1, Ga constructed above have the following ordering property. Let Eq, FEo denote
the range of their associated analysis maps Ty, : H — 12(I), Ti(z) = {(z,9¥)},c;. k = 1,2. Then Ey C E», or,
in the terminology that will be introduced in the next section, G < Gs.

Sequences (I, )n>0 that yield the same classes of equivalence are characterized by the following sufficient
condition. For the sake of simpler notation, assume (I,),>0 and (Jp)n>0 are extended by one term, namely
I, =J,=0.

Theorem 2.9. Suppose (I,)n>0 and (Jy)n>0 are two covering, nested and finite sequences of subsets of I.
Denote by Ni(n) the largest integer so that Jy, () C I, and by Na(n) the smallest integer so that I,, C Jyn,(n)-

If

Inom| — L,
lim 1| = ] = 0 (27)
Tnoim | — |1
fm el =W (28)
A

then for every F1,Fa € F[I]|, F1 ~ Fa with respect to (I,)n>0 if and only if F1 = Fa with respect to (Jp)n>o0;
Proof
Assume (27,28) hold true. Let F1,F» € F[I] be two equivalent frames with respect to (Jy)n>0. Then

lim —— S (UL 1) — (2. £2) = 0

n—oo | Jp| 5

TR R e B SCER - D DG

| TN ()| i |7,.| LT o

Now

where () = (f1, f1) — (f2, f2). We compute separately the limits of the two right-side terms. The first term
converges to zero because limy, oo [Jn, (n)|/[In] = 1 (by 27) and the previous relation. The second term converges

to zero as well since | 32,7 \ 7. ( )()\ < || = [Ny (ny| and then apply (27).
n 1(n

For the converse, note that (27,28) are symmetric with respect to (I,), (Jy,). Indeed, let M;(n), Mz(n) be the
largest, respectively the smallest integer so that Ins, () C Jn C Iagy(n).- Then n = No(Mi(n)), n = N1(Mz(n)),
and consequently

[ Ins )| — [ Im|

|Jn| - |IM1(n)‘ —0

= lim

| m—oo | Jny(m)l

since m = M;(n) — oo when n — oco. Similarly one obtains the other limit

I ann Imelm
i M) =l o ] = [ )

=0

n—o0 [ ] m—o0 | T, (m)]
Now, applying the same argument as before, when F; = F» with respect to (I,)n>0, one obtains F; ~ F» with
respect to (Jy,)n>0. O

2.3. Standard Ordering Revisit
The standard ordering is defined as follows (see®). Let Fy,Fy € F[I].

DEFINITION 2.10. We say Fi is smaller than Fo and write Fy < Fy if there is a bounded T : Hy — Hy so that
fl=Tf? for everyi € I. One can easily check that < is indeed a partial ordering relation, that is it is reflexive
(F < F), transitive (F; < Fy and Fy < Fz imply F; < F3), and antisymmetric (F; < Fp and Fp < Fy imply
F1 ~ F3). Moreover, it admits the following equivalent geometric characterization:

Theorem 2.11 (3). Consider Fi,Fy € F[I| and Py, Py their associated orthogonal projections onto the
coefficients range. Then Fy < Fy if and only if P, < P» (that is Ran Py, C Ran P,). The antisymmetry
property with respect to ~ equivalence relation suggests to search and define a new ordering relation that is
compatible to & equivalence relation. This is accomplished in the following subsection.



2.4. The New Ordering Relation

Fix (I,,)n>0 & nested, covering subsequence of finite subsets of I. Let Fy, Fo € F[I] be two frames indexed by I
with canonical duals F; and F3, respectively.

DEFINITION 2.12. We say F7 is more redundant than Fo, and write F1<Fs if

lim inf — 1,f~il>) >0 (29)
e | n| i€l

It is not hard to check for < that

F 4 F (reflexive) (30)
FidF, and FodFs = F1<Fs; (transitive) (31)
FidFz and FodFy =  Fi = Fa(antisymmetry) (32)

Thus < is a veritable order relation on F[I].

REMARK 2.13. Assume F; < Fa. Then Pi < P, in the sense of quadratic forms, that implies (f}, f;l) < (f?, ff),
hence F1<dF3. Thus whenever two frames are comparable with respect to <, they are also comparable with respect
to < and the latter agrees with the former relation.

An alternative way to introduce a partial ordering that parallels the Murray - von Neumann projection
comparison theory is furnished by the following definition. Let Fi, Fy € F[I].

DEFINITION 2.14. We write F1CF if there is Fsz € F[I] so that F1 =~ F3 and F3 < F2. Note the following
immediate properties of C:
F C  F (reflexivity) (33)
FiCFy and FoCF, = Fi;~ F, (antisymmetry) (34)
Whether C has or has not the transitivity property, is not an obvious issue. In fact it still remains an open
problem. However the following is true:
Theorem 2.15. Assume Fi,Fy € F[I|. Then

1. Ifflgfg then flﬂfg;

2. Assume C is transitive. Then F1<Fy implies F1CFs.

In effect this result shows that, if C is transitive, hence if it is a partial ordering relation on F[I], it is
equivalent to <. Since out theory is based on <, it will be little affected by a future solution to the transitivity
issue of C. We shall return to this issue after we present the proof of Theorem 2.15

Proof of Theorem 2.15
1. Assume F; =~ F3 < F». Then

hmlan_Z fzafZ fzaf >) > hmlnf]—_z fzan ’f~23>)

n—oo | |zeI n—oo | |zeI

+ lim inf — \I | >« 1) = liminf — \I | S 3 f3)) >
i€l i€l,

which proves F1<F.

2. Assume L is transitive and F;<dF3. Similar to the proof of Theorem 2.7 construct G; = {gil;i € I} and
Go = {g};i € I} so that F1 ~ G, Fo = Ga, an(G1) < an(F1), an(F2) < an(G2), an(G1) < an(G2) and g}, g7 are
either 0, or distinct elements from an orthonormal set B so that when g7 = 0 then g} = 0, and when g} # 0,



g2 = g} € B. Clearly G < Gs. On the one hand F1CG, because F1 ~ G1 < Ga. On the other hand GyCF>,
trivially because Go &~ Fy < F5. Now since C is transitive we obtain F;CF> which concludes the proof. [

REMARK 2.16. Theorem 2.15 shows that the binary relation C would not give a new classification of the classes
of equivalent frames. Instead it would also provide another description of the partial order relation <, description
similar to Murray-von Neumann projection theory.

Let us describe in more details the transitivity question for C. Since the equivalence relation ~ on frames
induces an equivalence relation on projection operators of 12(I), we shall state the problem in 1*(I) space. Assume
Py, Py are two orthogonal projections in 1?(I) so that (P15;,0;) < (P28;,0;), for all i € I. Then the transitivity
of C is equivalent to the construction of an orthogonal projection P in 1*>(I) such that it is a subprojector of Py
(that is Ran P3 C Ran Py) and satisfies:

1
lim —
oo I

> ((Psbi i) — (P165,6:)) =0 (35)

iel,

3. THE FRAME MEASURE FUNCTION

In this section we present the definition and basic properties of the frame measure function, followed by the
existence and universality of the canonical free ultrafilter frame measure function.

Again I denotes a countable index set, F[I] denotes the set of frames indexed by I and we fix (I,,),>0 a
nested, covering sequence of finite subsets of 1.

We recall the notion of superframe (see''? ) (or disjoint frames, as used by D.Larson, see'®). Let Fi,...,Fr €
F[I], a finite number of frames indexed by I.
DEFINITION 3.1. We call (Fi,...,Fr) a superframe if
F=F1& - @F,={flo--aff,icl} (36)

18 a frame in H1 @ --- & Hy, the direct sum of Hilbert spaces spanned by Fi,...,Fr, respectively.
An equivalent characterization of superframes is given by the following

Theorem 3.2 (*). The collection (Fu,...,Fr) is a superframe if and only if the following two conditions
hold true:

1. Each F; is frame, 1 <[ < L;

2. BxN (3 E) ={0}, for 1<k <L, and Z£:1 E, is closed (where Ey is coefficients range in 1*>(I) of the
analysis operator associated to Fi).

In particular, the second condition above holds true when the coefficients range E; are mutually orthogonal.
This special case is called orthogonal in the sense of supersets (or strongly disjoint, see'). More specific we
define

DEFINITION 3.3. Two Bassel sequences F1 = {fi;i € I} and Fo = {f?;i € I} indexed by I are said orthogonal
in the sense of supersets if E1, the range of analysis operator associated to Fi, is orthogonal in [*(I) to Es, the
range of coefficients associated to F>. The condition in the definition reads as:

> g F(f2 Ry =0, Yg€ Hy, Vhe Hy (37)
i€l

REMARK 3.4. Clearly if two frames F1,Fa are orthogonal in the sense of supersets, then F1 N Es = {0} and
E1+ Es is closed, hence (Fi,F2) is a superframe. Note in this case the space of coefficients associated to Fi & Fo
1s exactly E1® Ea, and the orthogonal projection onto this space, P is given by P = P+ P, the sum of orthogonal



projections associated to Fy, respectively Fa. In particular, the canonical dual of F1 ® F» is the direct sum of
the canomnical duals of F1 and Fs.

REMARK 3.5. For any frame F € F[I], one can always construct F' € F[I] that is orthogonal to F in the
sense of supersets. Indeed, this is done as follows. Let P be the projection in I*>(I) onto the range of the analysis
operator associated to F. Then Q = I — P is also an orthogonal projection in 12(I). Project now the canonical
basis of 12(I) onto Ran Q, say F' = {Q6; ; i € I}. One can easily chack now that F' is a (normalized tight) frame
and the range of ita analysis operator is exactly Ran Q, therefore orthogonal to F in the sense of supersets.

EXAMPLE 3.6. Consider the following model, namely the set of Fourier frames. In H = L0, 1] consider the
Fourier basis e, (x) = e*™"® n € Z. Consider an invertible mapping r : I — Z, and, by abuse of notation,
redefine e; = e,;y. For every measurable subset J C [0,1] denote f{’ = e;1y the product between e; and the
characteristic function of J, 1;. It is easy to check that Fy = {f{ ; i € I} is a normalized tight frame indezed
by I whose closed span is L*(J). Moreover, for two subsets Ji,Ja C [0,1] so that J1 N J2 = 0, Fy, and Fy,
are orthogonal frames in the sense of supersets and Fj, & Fj, ~ Fjug,- On the other hand, for Ju C Ja, then
Fs, < Fy, and therefore Fj,<F;,. Note also || f||* = u(J), the Lebesgue measure of J. Therefore for two
subsets Jy, Jy so that p(J1) = p(J2), Fr, ~ F,.

3.1. Definition of the Frame Measure and Redundancy Functions
Fix (I,)n>0 a nested, covering sequence of finite subsets of I.

For a compact space M, we denote by C*(M) the set of real-valued continuous functions over M, and C(M)
the set of complex-valued continuous functions over M:

C*(M) = {f:M— R| f continuous } (38)
C(M) = {f:M — C| f continuous } (39)

If M is also Hausdorff separable, then it is normal (see Chapter 1, Section 2.8 in?®) and by Urysohn’s Lemma
for any two disjoint closed subsets Fy, Fy of M, there is a continuous real-valued function f € C*(M) so that i)
0 < f(z) <1, forall z € M; ii) f|p, = 0;iii) f|p = 1.

A frame measure function is a representation of the set of frames indexed by the same index set with a
predefined summation order (I,,), >0, that is faithfull with respect to the equivalence relation ~ (first property),
compatible with the partial ordering < (second property), normalized on s-Riesz bases (third property), and
additive on orthogonal superframes (fourth property). More specific,

DEFINITION 3.7. Given a compact and Hausdorff separable space M, we call m : F[I] — C*(M) a frame measure
function if it satisfies the following properties:

1. For any F1,Fs € F[I], F1 =~ Fs if and only if m(F1) = m(Fz);

2. For any F1, Fe € F(I], FidFs if and only if m(F1) < m(Fz);
3. For any Riesz basis for its span G € F[I], m(G) =1, the constant function 1 over M;
4. For any Fi,F2 € F[I] so that (F1,F2) are orthogonal in the sense of supersets, m(Fy @& Fa) = m(F1) +

Frame redundancy is measured by the inverse of a frame measure function. More specifically,

DEFINITION 3.8. A map R : F[I| — C*(M), where C*(M) = {f : M — RU{oo} | f continuous where is finite},
is called a frame redundancy function, if m : F[I] — C*(M), m(F)(p) = 1/R(F)(p), is a frame measure func-
tion.

REMARK 3.9. One can ask whether properties 3,4 can be strengthen. More specifically, one can ask whethere
there is a frame measure function so that if m(F) =1, then F is necessarily a Riesz basis for its span, and, or,
if (F1,F2) is a superframe (not necessarily superorthogonal), then m(Fy @ F2) = m(F1) + m(Fa). The answer



to these questions is negative. Before we give the complete answer, we need to prove several properties of frame
measure functions.

In the following we shall present several properties of frame measure functions. We postpone an explicit
construction of a frame measure function until the next subsection.

The following properties are stated in a sequence of propositions. We assume m : F[I] — C*(M) is a frame
measure function.
Proposition 3.10. For any F1,Fa, ..., Fp € F[I] frames that are mutually orthogonal in the sense of supersets,
M(FL @ © Fp) = m(F1) + -+ m(Fp).

The proof is immediate by induction.
Proposition 3.11. For any F € F[I], 0 < m(F)(p) < 1 for everyp € M.

Proof

Since F < G for any orthonormal set G € F[I], from properties 2 and 3 it follows that m(F)(p) < 1. On the
other hand, for any frame F € F[I], one can always construct ' € F[I] that is orthogonal to F in the sense of
supersets (see Remark 3.5). Moreover F @ F’ is a Riesz basis for its span H @ H’, since its coefficients range is
the full space [2(I). Then 1 = m(F @ F') = m(F) + m(F’') and since m(F’) < 1 we conclude that m(F) > 0.
Q.E.D.

Proposition 3.12. Assume for F € F[I], lim,_, a,(F) exists. Then

m(F)(p) = lim 1

S i fi) , YpeM (40)

i€l,

Proof

The proof of this result uses an explicit realization of frames that have constant averages a,. Consider the
Fourier frame model (see Example 3.6).

Consider p € N a nonzero integer. Set J; = [0, %], Jo = [%, %], R [pTTl, 1] the set of p disjoint intervals
of equal length covering [0,1]. Then Fy,,...,F;, are normalized tight frames mutually orthogonal in the sense
of supersets , and applying Proposition 3.10,

P
m(FL @0 Fp) = m(Fy,)
k=1
But the left hand side is 1, since it is the measure of a frame equivalent to the orthonormal basis Jjg ;). On the
other hand Fj, =~ Fy, for and 1 < k,l < p. Therefore we obtain m(F;, )(z) = % for all x € M.

Next consider 0 < 1 <1 a rational number. Set Ko = [0, 1], K1 = [, g;—l], e Kpg = [%17 1]. Then
Py g
L=m(Fr, & Fre, @+ @ Fre, ) = m(Fy,) + >_m(Fr,) = m(Fs,) + v
k=1

Hence m(Fj,) = 1.

Finally, let r € [0,1]. For any € > 0, there are two rational numbers ¢, ¢5 € [0,1] so that r —e < ¢f <r <
g5 < r+e. But Flgge19F 0, <L Fo,q5)- Therefore g7 = m(Fo,4s)) < m(Fo,) < m(Floes)) = ¢5- Since € was
arbitrary we conclude m(Fp,,)(x) = r, for all z € M.

We conclude the proof by noting that, if » = lim,, .. a,(F) then F ~ Fjq,). Hence m(F)(z) = r for all
ze M. QED.

Proposition 3.12 allows us to answer the questions raised in Remark 3.9. This is given through two negative
statements:

Proposition 3.13. There is no map m : F[I] — C*(M) that satisfies:



1. For any F1,F2 € F[I|, F1 = Fo if and only if m(F1) = m(Fz);

2. For any F1, Fo € F(I], F1dFs if and only if m(Fy) < m(Fz);

3. A frame G € FI] is a Riesz basis for its span if and only if m(G) = 1, the constant function 1 over M;

4. For any Fi,F2 € F[I] so that (F1,Fa) are orthogonal in the sense of supersets, m(Fy @ Fa) = m(Fy) +
m(Fz).

Proof

Assume such a mapping m exists. Then it would be a frame measure function and would have the property
that, if m(G) = 1, then necessarily G is a Riesz basic sequence. Construct G = {g;;4 € I} where g; = e; for
tel,i#i1,12, gy, = Giy = %eil, and {e;} is an orthonormal set. Clearly G is frame that has excess 1, because
{gi;i € I,i # i1} is a Riesz basis for the same span as G. Moreover, G is a Parseval frame, hence its canonical
dual coincides with G. For any sequence (I, )n>o of finite, nested, and covering subsets of I, the averages a,(G)
are either 1, or ”"‘l[:‘o":’, or HIT}L_Il Either way, lim,, .~ a,,(G) = 1 which, combined with Proposition 3.12, implies

m(G) = 1. Yet G is not Riesz basic sequence. Q.E.D.
Proposition 3.14. There is no map m : F[I| — C*(M) that satisfies:

1. For any F1,F> € F[I], F1 = F» if and only if m(F1) = m(F2);
2. For any Fi, Fo € F(I], F1dFs if and only if m(Fy) < m(Fz);
3. If G € F[I] is a Riesz basis for its span then m(G) = 1, the constant function 1 over M;

4. For any F1,Fa € F[I] so that (F1,Fz) is a superframe, m(Fr © Fa) = m(F1) + m(Fz).

Proof Assume such a mapping m exists. Then it would be a frame measure function and would have the
property that, if (F7,F2) is a superframe not necessarily orthogonal in the sense of supersets, then m(F; ®
Fs) = m(F1) + m(Fz). We shall construct two frames F1,F> € F[I] so that (Fy,Fz) is a superframe, yet
m(F1 @ Fa) # m(F1) + m(Fz). To simplify the analysis, consider the case I = Z \ {0} and I,, = [-n,n] N I.
Let {ex}rez be an orthonormal set. Then define G1 = {g};k € I} by g; = 3(ex + e—;). Thus G is a Parseval
frame for span{e; + e_1,e2+ €2, -+, ex + e—k, ---} and ||g}||* = &. Define Go = {g};k € I} by g} = ek, g%, =0,
for all k& > 0. Clearly Gy is also a Parseval frame. A direct verification shows that (G1,G2) is a supeframe.
In fact G1 @ G is a Riesz basis for span{er; k € Z \ {0}}. Now consider an invertible map o : I — I such
that lim, .o 5=|o([—n,n]) " N| = 1. For instance o(n) = 2n, o(—n) = —2n — 1, for n > 0 that is not a
power of 2; for n = 2™, 0_,, = —m, 0, = cm, where {cn} = {3,4,7,8,15,16,...,2% — 1,2F,...}. Define
Fi={fL; fi= g;(n)}, Fo={f2; f2 = gg(n)}. Note each Fi, 7, is a Parseval frame. Moreover, a,(F1) = 1,
and an(F2) = 5=|o([-n,n]) N N|. Therefore m(F1) = 3 and m(F,) = 1. Since the angle between RanT'r,
and RanTr, is the same as the angle between RanTg, and RanTg, since o induces a unitary (permutation)
transformation in /(1) that maps RanTg, into RanTx, and RanTg, into RanTx,. Consequently (Fy,F2) is
also a superframe and a Riesz basis. Hence m(F; @ Fa2) = 1. Clearly m(F1 & Fa) # m(F1) + m(F2). Q.E.D.

REMARK 3.15. In a private communication,’ Pete Casazza constructed an example so that for every ¢ > 0 there
is a superframe (F1,F2) so that each F1 = {f};i € I} and Fo = {f?;i € I} is a Parseval frame, normf} = c1,
Ifall = ca, for alli €I, and 1 —e < ¢1,c2 < 1.

REMARK 3.16. In general m(F1 @ F2) # m(F1) + m(Fz2) when (F1,Fz) is a superframe. However the equality
holds true only for special cases. By definition, it holds true whenever (Fi,F2) are orthogonal in the sense of
supersets.

Proposition 3.17. For any F € F[I] and for every x € M,

liminf a,, (F) < m(F)(z) < limsup a, (F) (41)

n—00 n—oo



Proof

Let r = liminf, .. @, (F). Consider the Fourier frame Fjy,;. Clearly liminf, .. (a,(F) — an(Fio)) =
lim inf,, oo an(F) —r > 0. Hence Fjg<<F and r < m(F)(z) for every x € M.

Similarly, if R = limsup,, ., a,(F) then F<QFg, ) and thus m(F)(z) < R, for every x € M. Q.E.D.
Proposition 3.18. For any F € F[I] there are xo,yo € M so that

m(F)(zo) = linlgio%fan(]:) (42)
m(F) o) = limsupan(F) (43)

Proof

We use again the Fourier frames Fs. Let r = mingeyrm(F)(x). Then r < m(F) which implies Fjg ,j<IF (by
Axiom 2). Therefore liminf,, .o (a,(F) —r) > 0. Hence liminf,,_. a,,(F) > r. Using now Proposition 3.17 we
obtain r = liminf,,_.« a,(F). Since m(F) is continuous on the compact M, it follows it achieves its minimum
at some point xy. Hence (42).

A similar argument proves (43). Q.E.D.
Proposition 3.19. For any F € F[I] and r € [0,1], there is F, € F[I] so that a,(F,) = ra,(F) and
m(F,) = rm(F).

Proof

The proof goes along the lines of proof of Proposition 3.12. First use Theorem 2.7 and replace F equivalently
by a frame G made of an orthonormal set interlaced with zero vectors. For an integer p the frame G can be
decompose into p frames Gi, ..., G, € F[I] defined by projecting G onto Hu, ..., H, an orthogonal decomposition
of span(G) where each Hj, are spanned by an average of ;1) nonzero vectors of G (that is for each I,, about %
nonzero vectors from {g;;¢ € I,} go to each Hy). Then G ~ G1 @ --- & G,, where (G1,---,G,) are mutually
disjoint, and Gy ~ --- ~ Gp,. Therefore m(G) = pm(Gi), hence m(G,) = +m(G) = %m(f).

Next, for r = 1, we have m(G1 @ - - - Gg) = qm(G1) = Im(F).

1
p

Finally, for r ¢ Q, construct F,. < G so that |a,(F,) — ra,(G)] < \I_ln\ similar to the construction in the
proof of Theorem 2.7. Next, for any rational number ¢; < r we can construct Gy, so that a,(Gq,) < an(F,) and
|an(Gq,) — qran(F)| < ﬁ Therefore g1m(F) = m(Gg,) < m(F,). Similar, for any rational go > r construct Gy,
so that an(Gg,) > an(Fr) and |an(Gg,) — gran(F)| < \I_ln\ Therefore gom(F) = m(Gy,) > m(F,). Since ¢1, ¢
were arbitrary, we obtain m(F,) = rm(F). Q.E.D.

Proposition 3.20. Let Fy,...,Fp € F[I] and r1,---,rp € [0,1] be such that r1 +--- +rp = 1. Then there is
F € FI] so that m(F) = rim(F1) + ---rpm(Fp) for any frame measure function m.

Proof

First using Proposition 3.19 we construct Gi,...,Gp € F[I] so that m(Gx) = cxm(Fi), 1 < k < D. Moreover
the frames Gy, are in the canonical form given by Theorem 2.7. Since r1a,(F1) + -+ -+ rpa,(Fp) < 1 for all n,
we can adapt the construction of Theorem 2.7 so that the vectors of G, are mutually nonzero, that is if gf“ #0

for some 1 < kg < D and i € I, then gf =0 for all 1 < k < D with k # kg. That means (G1,...,Gp) is a
superframe of mutually orthogonal frames (in the sense of supersets). Define F = G; @ --- @ Gp. Hence

m(F)=m(G1) +---+m(Gp) = rim(F1) +--- + rpm(Fp).

Note F is independent of the particular measure function m. Q.E.D.
In particular, Proposition 3.20 says that the range of any frame measure function is a convex set.

With respect to = equivalent classes of frames have a natural lattice structure that we describe in the
following.



Theorem 3.21. Consider F1,Fa € F[I]. There are Fp, Frr € F[I] so that:

Fm g Fum (44)
min(an(F1), an(F2)) — ﬁ < an(Fn) < min(an(Fr), an(Fz)) (45)
max(an(F1),an(F2)) < an(Fu) < maz(an(Fr),an(F2)) + ﬁ (46)

Moreover the measures of F,, and Fys satisfy:
m(Fp) < min(m(Fr), m(Fz)) (47)
m(Fuy) > max(m(Fr), m(Fz)) (48)
m(Fm) + m(Fr) = m(Fr) + m(Fz) (49)

for any measure function m. This result suggests the following definition:

DEFINITION 3.22. We denote by Fi1 A Fo the frame class of Fp., and by Fy V Fs the frame class Fa; above.
One can easily check for three frames Fy, Fa, F3 € F[I] that:

FINFaANFs) =~ (FiANF)AFs (50)
FIV(FoVF) =~ (FIVF)VF; (51)
FiN(FaVF;) = (FihFa)V(F1AF3) (52)
FiV(FaNF3) =~ (F1VF)A(F1V F3) (53)

REMARK 3.23. Relations (50-53) make (F|[I]] ~, <, A, V) a distributive lattice of classes of frames (see,??2).
Proof of Theorem 3.21

Frames F,,,, Fs that satisfy (44,45, 46) are easily constructed similar to the frames Gy, G of Theorem 2.7.
Indeed, with the notations of the proof of Theorem 2.7, we construct F,, similar to G; so that

an(Fm) = me(Z(le,le), Z<fi25fi2>)Jv

icl, icl,

and Fjs similar to Ga so that

an(Far) = Tmaz(Y (17D, DT

i€l i€ln
This proves (45) and (46). Note by construction that F,,<F, hence (44).

Since an(Fm) < an(F1) and an(Fm) < an(Fz), it follows m(Fy) < m(F1), m(Fn) < m(Fz) that is
(47). Similarly an(Far) > an(F1) and an(Far) > an(F2) imply m(Far) > m(Fr) and m(Fur) > m(Fa),
which is (48). Assume now that a,(Fi1),an(F2) < % Then F,, and Fj; can be chosen so that the set of
nonzero vectors are disjoint, that is (F,,, Fas) are orthogonal in the sense of supersets. Moreover, F; and Fo
can be replaced equivalently by two frames G; and G» as in Theorem 2.7 that are orthogonal to one another
in the sense of supersets. Then an(Fm) @ Fum) = an(Fm) + an(Fur), an(Gr ® G2) = an(F1) + an(F2) and
limp oo |an(Fm @ Fur) — an(G1 ® G2)| = 0. Hence m(Fy, @ Far) = m(G1 @ Go) and then m(Fy,) + m(Fu) =
m(F1) + m(F>) which proves (49). The general case when a, (Fy) or a,(F2) is greater than 1 reduces to the
previous case using Proposition 3.19. Q.E.D.

The following result says that any frame measure function is continuous with respect to the frame topolgy 7
introduced at the end of section 2.1. This is a striking result since a priori we have not assumed any continuity
property of frame measure functions. It turns out the algebraic conditions are powerful enough to guarantee, in
fact, Lipschitz continuity.



Theorem 3.24. Any frame measure function m : F[I] — C*(M) is uniformly continuous with respect to T
topology on FI], and sup-topology on C*(M). Furthermore,for any two frames Fi,Fo € F[I| with Py, Py their
associated orthonormal projections,

[m(F1)(z) —m(F2) (@) < 2|Pr — Pl (54)

Proof

First, if 71 ~ Fa, then m(F1) = m(Fz) and (54) is satisfied. Therefore consider the case Fi % Fa. Consider
Fu = F1VFy and F, = F1 A Fa. Let by, = an(Fn) and ¢, = an(Far). By construction, b, < ¢, and
lim sup(c, — by,) > 0 because we excluded F1 ~ Fa. Denote s, = by || — bp—1|In—1], ™n = cn|In| — cn—1|In-1].
Note that s,,r, are nonnegative integers and

5w —ral <24 Y (AL FD — TR < 24 (Lal = 1 DIPL— B (55)
ie]n\lnfl
ng
D> Ge—m)l <24 Y (A = R < 24 (Ln| = I, )| P1 — Po] (56)
k=ni+1 €10 \Ing

We construct now two new frames G1,Go € F[I], G1 < Ga, of vectors from an orthonormal set and zeros
as follows. Set G1 = U,+,G}, Go = U;,~,G2 disjoint decompositions of Gi,Gs induced by (I,)n,>1, that is
Gr={gl;i€I,\In1}, G2 ={g?; i€ l,\ I, 1} Next we shall construct G}, G2. For n = 1, construct
Gi,G? so that G € G? and a1(GY) = a1(Fn), a1(G3) = a1(Fu). For n > 1 we construct inductively. Set
dp = an(G2) — an(G1) — (¢, — by). Note di = 0. Assume g,g,g,%, 1 < k < n, are constructed. Furthermore,
assume a,,(G') < by, a,(G?) > ¢y, and thus d,, > 0. We construct G} 1, G2, as follows. If

o1 = nl(an(G%) = cn) = [In](bn = an(G1)) + snt1 (57)
then choose G}, G2, so that the cardinal of nonzero vectors of these sets, #|G} |, #|G2, | are given by
#1Gn1] = 1| (bn — an(G1)) + 01
#1Gn 1] = o — [l (an(G?) — cn)

Otherwise, choose G}, |, G2, so that the cardinal of nonzero vectors of these sets, #|G; 1|, #|G2, | are given
by
#1Gn 1| = #G0 11| = maz(ruy — [In|(an(G*) = cn), 0)

First we note these sets are realizable because 0 < #[G} 1| < #|G2, | < rny1 < [Ing1] — |I|. Next note

|In| #|g717,+1‘ |In‘ Sn+1
#G) = e G T S ™ T )
|In| #|g72L+1‘ |In\ Tn+1
An, g - Ap, g + Z Ccn + = Cn
(@) = e @) T T el T ] O

We thus obtain frames Gy, G2 € F[I] so that G; < Ga, an(G1) < by, an(G2) > ¢y, and thus d,, 11 > 0. Note the
condition (57) can be compactly restated as: 741 — Spt1 > |In|dy. For d, we get the following recurrence:

0 ) if Tn+1 — Sni1 2 |In|dn
dn+1 -

I r —s .
|"|‘ n — B —ttl O otherwise

[Tn+1 [Tnt1]

Let (mg)r>0 be the sequence of zeros of d, that is dpy, = 0. We prove now that (mg)g>o is not finite. Indeed,
assume there is M so that d,, > 0 for all n > M. Then:

1 1 1
dn = II_n‘dM A Y (rn—sk) = m(dM + (em = bar) [T l) = (en — bn)
k=M+1



Therefore:

0 < liminfd,, = —limsup(c, —dy) <0
n 1

n

which is a contradiction. Hence (my) is an infinite sequence. Consider now m; < n < mjy1. Then using the
recurrence relation above and (56)

1 n 1 n
dn = 1A > (sk—rk) < m\ > (k=) (58)
n k=mj;+1 n k=mj+1
2 |In| - |Im-| 2
< —+——P B < — + || — P (59)

Now we return to Fi, Fa. Note first |a, (F1) — an(F)| < ||P1 — Pz||. Since G1<Fy, G1<F, we have m(Gy) <

min(m(F1), m(Fz)). Similarly, from F;<G2 and F2<G, we have m(Gz) > max(m(Fy), m(Fz)). Furthermore,
since G1 < Ga, there is G € F[I] so that Go ~ G; @ G and (G1,G) is an orthogonal superframe. Then:

|m(F1)(z) — m(F2)(z)] < [m(G2)(z) — m(G1)(x)] = m(G)(z) < hrrzn—?olip an(G)

= limsup(an(G2) — an(G1)) < limsupd,, + limsup |a,(F1) — an(F2)| < 2||P1 — P

n—oo n—od n—od

which proves the Theorem. Q.E.D.

24.

25.
26.
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