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Abstract

In this paper we present nonlinear versions of the Circle and Popov Criteria of absolute asymptotic

stability for nonlinear systems. We use a Kalman-Yakubovich-Popov type approach for nonlinear

systems which involves a Hamilton-Jacobi equation and a nonlinear KYP system. Our criteria give

su�ciency conditions of absolute asymptotic stability as well as uniform estimations of the attraction

basin of the origin for the closed loop systems.

1 The Hamilton-Jacobi Equation and The Nonlinear Kalman-

Yakubovich-Popov System

Let us consider the nonlinear Popov system composed by a nonlinear a�ne dynamics and a quadratic

criterion:

P

�
_x = f(x) + g(x) � u ; x(0) = x0

J(t1) =
R t1
0
[q(x) + 2l(x)u+ u�R(x)u]dt

(1)

where x(t) 2 D � Rn, u(t) 2 Rm, q : D ! R, l� : D ! Rm (� denotes the transpose), R : D ! Rm�m,

f; gi : D ! TD are vector �elds of class C1 on D a domain of Rn with 0 2 D, f(0) = 0 and gi(0) = 0

(we have denoted g(x) � u =
Pm

i=1 gi(x)ui). We denote by P = (f; g; q; l; R) a nonlinear Popov system.

We shall suppose the following assumptions on criterion: q(0) = 0, q0(0) = 0, l(0) = 0, R(x) > 0,

8x 2 D and they are functions of class C1 on D.

Starting with system (1) we de�ne two objects: the HJ equation and the nonlinear KYP system.

The Hamilton-Jacobi Equation (The nonlinear Riccati equation) has the form:

rV � f � (
1

2
rV � g + l)R�1(

1

2
rV � g + l)

�
+ q = 0 (2)

�
on leave from University "Politehnica" of Bucharest
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where the solution is a scalar function V : U � D ! R, V (0) = 0 of class C1. We call a solution Vs(x)

stabilizable if the feedback:

u = �R�1(
1

2
rV � g + l)

�
(3)

asymptotically stabilizes the system (1) (i.e. the vector �eld:

~f = f � gR�1(
1

2
rV � g + l)

�

has at �x = 0 an asymptotic stable equilibrium point).

We call a solution Va(x) antistabilizable if the feedback (3) makes the origin stable in reverse time for

the system (1).

The Nonlinear Kalman-Yakubovich-Popov System is de�ned by the following set of equations:

R(x) = G�(x)G(x)

1

2
rV (x) � g(x) + l(x) = W �(x)G(x) (4)

rV (x) � f(x) + q(x) = W �(x)W (x)

where a solution is a triplet of the form (G(x);W (x); V (x)) composed by real matrix valued functions

de�ned on U � D with V (0) = 0 and V of class C1. We call a solution (Gs(x);Ws(x); Vs(x)) stabilizable
if the feedback:

u = �G�1s (x)Ws(x) (5)

makes the origin asymptotically stable for the system (1) (i.e. the vector �eld

~f = f � gG�1s Ws

has at �x = 0 an asymptotically stable equilibrium point). We call a solution (Ga;Wa; Va) antistabilizable
if the feedback (5) stabilizes the system (1) in reverse time.

We see that under the assumption R(x) > 0 both objects (the HJ equation and the nonlinear KYP

system) are equivalent.

In this paper we shall work only under the assumption R(x) > 0.

Let (G;W; V ) be a solution of (4). Then one can obtain the following factorization of the criterion:

J(t1) = �[V (x)]jx(t1)
x(0)

+

Z t1

0

kW (x) + G(x)uk2dt (6)

The connexion between the nonlinear Popov system and HJ equation is given by a variational problem

and is well known. Actually, the equation (2) has the form H(x;rV (x)) = 0 where the Hamiltonian is

given by:

H(x; p) = p � f(x) � (
1

2
p � g(x) + l(x))R�1(x)(

1

2
p � g(x) + l(x))� + q(x) (7)

Furthermore, it is well known that any solution of (2) corresponds to an invariant manifold of the

Hamiltonian vector �eld given in the space (x; p) by:

XH = (
@H

@p
;�

@H

@x
)T

(see [Isid91] for details).

On another hand, the nonlinear KYP system and relation (6) are natural associated to the nonlinear

Popov system when someone studies the property of (1). Such approaches are investigated, for example,

in [Will72] , [Moyl74] and [HiMo76].
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2 Nonlinear Popov Systems

In this section we are going to study some properties of the nonlinear Popov systems of the form (1).

We start by recalling the de�nition of minimal stability (see [Popov73] for instance):
De�nition The nonlinear Popov system (1) has the property of minimal stability if there is a

neighborhood of the origin 0 2 U such that for any x0 2 U there is a piecewise continuous control

u : [0;1)! Rm such that the solution of the dynamics from (1) remains in D (x(t) 2 D), goes to the

origin limt!1 x(t) = 0, J(1) is �nite and J(1) � 0.

We stress out that the control u may depend on x0 as well as on U .
It is worth noting that the criterion is �nite under the following requirements: u 2 L2;m[0;1),

x 2 L2;n[0;1)\ L1;n[0;1).

Indeed, since q0(0) = 0; q(0) = 0 and q is of class C2 on D we get: q(x) = x� � q2(x) � x. In a similar

way, since l(0) = 0 we get l(x) = x� � l1(x). Now, q2(x) and l1(x) are both of class C0 on D. From the

boundedness of the state x(t) there exist positive constants M1;M2;M3 > 0 such that:

k q2(x(t)) k�M1 k l1(x(t)) k�M2 k R(x(t)) k�M3

for any t 2 [0;1). From k x(t) k; k u(t) k2 L2[0;1) using Cauchy-Buniakowsky-Schwartz inequality we

also get x� �N � u 2 L2[0;1) for any constant matrix N 2 Rn�m. Now we obtain:

jq(x) + 2l(x)u+ u�R(x)uj �k q2(x)k k xk
2
+ 2 k l1(x)k k xk k uk+ k R(x)k k uk2 �

�M1 k xk2 + 2M2 k xk k uk+M3 k uk2

from where we conclude that J(1) is �nite.

The de�nition of the minimal stability is useful because of the following Lemma:

LEMMA 1 Let us consider the nonlinear Popov system (1) and assume it has the property of minimal
stability. Then any solution of the HJ equation (2) such that V (0) = 0 is negative semide�nite: V (x) � 0,
whereas the antistabilizable solution (if it exists) is strict de�nite: Va(x) < 0, 8x 6= 0.

Proof

We rewrite (6) as:

V (x0) = J(t1) + V (x(t1)) �
Z t1

0

kW (x) + G(x)uk2dt

Now we choose u = ux0 as in the de�nition of minimal stability and we obtain (for t1 =1):

V (x0) = J(1)�
Z 1

0

kW (x) + G(x)uk2dt � 0

This proves the �rst part of lemma. For the second part we can see that Va(x0) = 0 for x0 6= 0 i�
J(1) = 0 and Wa(x) + Ga(x)u � 0. Then u = �G�1a (x)Wa(x) on the trajectory starting from x0 6= 0

and limt!1 x(t) = 0. On the other hand, because of (5), this control must render origin of the closed
loop stable in reverse time. Now we come very simple to a contradiction. Let " =k x0 k =2. Then for
any � > 0 we can choose a moment t� such that k x(t�) k< �, because of the convergence. Take now
x0 = x(t�) an initial condition for the reverse time system. Let us denote by �x(t) the solution of the
reverse time dynamics. Then �x(t�) = x0 and k �x(t�) k> ". 2

As in the linear case we try to analyze the equivalence of two Popov systems (see [Popov73]). This

will be useful in the proof of Popov criterion.
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De�nitionWe say that two Popov systems P1 = (f; g; q1; l1; R1) and P2 = (f; g; q2; l2; R2) are weak
local equivalent if there is a neighborhood of the origin U � D1 [D2 and a scalar function ~V : U ! R

such that:

R2(x) = R1(x)

l2(x) = l1(x) +
1

2
r~V (x) � g(x) (8)

q2(x) = q1(x) +r~V (x) � f(x)

for any x 2 U .
The nonlinear KYP systems as well as the HJ equations of two weak local equivalent nonlinear Popov

systems are very similar. This similitude is established by the following Lemma:

LEMMA 2 Suppose P1 = (f; g; q1; l1; R1) and P2 = (f; g; q2; l2; R2) are two nonlinear Popov systems.

Then P1 and P2 are weak local equivalent i� one of the following is true:
i) For any solution of the HJ equation associated to P1 there is a solution of the HJ equation associated

to P2 such that:
V2(x) = V1(x)� ~V (x) ; x 2 U

ii) For any solution of the nonlinear KYP system associated to P1 there is a solution of the nonlinear
KYP system associated to P2 such that:

G2(x) = G1(x)

W2(x) = W1(x)

V2(x) = V1(x) � ~V (x) ; x 2 U

iii) Between the two criteria J1 and J2 there exists the following relation:

J2(t1) = J1(t1) + [ ~V (x)]jx(t1)
x(0)

Proof

The equivalence between the condition of weak local equivalence and one of the conditions (i)-(iii)
comes from the following identity:

J1(t1) +

Z t1

0

d~V

dt
dt =

Z t1

0

[q1(x) +r~V � f + (2l1(x) +r~V � g)u + u�R1(x)u]dt

and:

[ ~V (x)]jx(t1)
x(0)

=

Z t1

0

d~V

dt
dt

Then by simple algebraic computations, using (2), (4) and (8), we obtain the statement. 2.

We point out that a complete study of local equivalence must take into account the change of coor-

dinates as well as the state feedback. But the equations involving by these conditions would be much

messyer than (8). Actually, in the present study we do not need this type of equivalency.

From the second point of the above Lemma we obtain the following result:

CORROLARY 3 If P1 and P2 are two weak local equivalent nonlinear Popov systems as in the above
Lemma then:

i) If V1s is a stabilizable solution of P1 then V2s = V1s � ~V is a stabilizable solution of P2;
ii) If V1a is an antistabilizable solution of P1 then V2a = V1a� ~V is an antistabilizable solution of P2;
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iii) For any solution V1 of P1 and V2 of P2 connected by V1 � ~V = V2 the feedbacks are the same:

u = �G�11 (x)W1(x) = �G�12 (x)W2(x)

Proof

The �rst two points (i) and (ii) come from (iii) and this one comes from relation (5) and point (ii)
of Lemma 2. 2

3 Statement of The Absolute Stability Criteria

Let us consider a SISO nonlinear a�ne system of the form:

(ND)

�
_x = f(x) + g(x)u

y = h(x)
(9)

where f; g are vector �elds of classe C1 on D � Rn, h is a continuous scalar function de�ned on D and

f(0) = 0, h(0) = 0.

Let us consider two continuous scalar functions �; � : R! R having the properties: �(0) = 0; �(0) = 0

and y�(y) � y�(y). With these functions we set the following sectors:

N�;� = f' : R! Rj' continuous; '(0) = 0; �(y)y < '(y)y < �(y)y for y 6= 0g
N�;�(t) = f' : R�R! Rj'(y; t) piecewise continuous in t and '(:; t) 2 N�;�g

(10)

Our problem could be formulated as follows:

The Problem Find conditions of local absolute asimptotic stability as well as an estimation of

attraction domain of the origin for nonlinear system (9) with respect to one sector de�ned above (see

�gure 1).

_x = f(x) + g(x)u

y = h(x)

'

-

�

g

6

--

�

u yr = 0

Figure 1: Closed-loop system

Before to state the theorems we need a de�nition.

De�nition The pair (h; f) is called zero-state detectable if from y(t) � 0 for t � 0 we conclude

x(t) 2 D for t � 0 and limt!1 x(t) = 0.

In the sequel we present the nonlinear versions of Circle and Popov Criteria.

THEOREM 4 (Circle Criterion - the nonlinear version) We consider the following HJ equation:

rV (x) � f(x) �
1

4
(rV (x) � g(x) + �(h(x)) + �(h(x)))

2
+ �(h(x))�(h(x)) = 0 (11)

If the following conditions are ful�lled:
1) There exists an antistabilizable solution Va : U � D ! R of class C1 of (11) (U being a neighborhood

of the origin);
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2) There exists a feedback '(:; :) 2 N�;�(t) that asymptotically stabilizes the closed loop and has U
included in the attraction domain;

3) The pair (h; f) is zero-state detectable;
then the system (9) is local absolute asymptotic stable with respect to the class N�;�(t) and, further-

more, the largest connected compact set of the form V �1a ([�a; 0]) � U is included in the attraction domain
of the origin for any nonlinearity in the sector N�;�(t). 2

For the Popov Criterion we give two versions: the �rst one can be applied to general nonlinear sectors

while the second one can be applied only to some special sectors.

THEOREM 5 (Popov Criterion - nonlinear version) We consider the nonlinear system (9) for
which h is of class C1. Suppose the denominator of the following HJ equation does not vanish on D:

rV (x) � f(x) �
1

4

(rV (x) � g(x) + �(h(x)) + �(h(x)) + �0rh(x) � f(x))
2

1 + �0rh(x) � g(x)
+ �(h(x))�(h(x)) = 0 (12)

where �0 2 R is a real parameter and:
1) There exists an antistabilizable solution Va : U � D ! R of class C1 of the equation (12) (U being

a neighborhood of the origin);
2)

� For �0 < 0 the feedback '(y) = �(y) asymptotically stabilizes the closed loop and U is included in
the attraction domain;

� For �0 > 0 the feedback '(y) = �(y) asymptotically stabilizes the closed loop and U is included in
the attraction domain;

� For �0 = 0 there exists a feedback '(:) 2 N�;� that asymptotically stabilizes the closed loop, with U
included in the attraction domain;

3) The pair (h; f) is zero-state detectable;
then the system (9) is local absolute asymptotic stable with respect to the class N�;�. Set

V2a(x) = Va(x) + �1

Z h(x)

0

�(u)du� �2

Z h(x)

0

�(u)du (13)

and:

Wc(x) = �V2a(x) + j�0j
Z h(x)

0

(�(u) � �(u))du (14)

where �1 � �2 = �0, �1�2 = 0, �1; �2 � 0. Then, for any positive number a > 0 such thatthe connected
component of the origin of V �12a ([�a; 0]) is a compact set included in U , the compact set W�1

c ([0; a]) is
included in the attraction domain of the origin for any feedback in the sector N�;�. 2

In Theorem 5 the found domain of attraction may depend on �0. Then a better choose of �0 may imply

a larger set. The choice of �0 could be suggested by the linearized system and then using the Popov

criterion (the linear version).

We point out that for �0 = 0 the HJ equation (12) turns into the HJ equation (11) and then we

obtain the Circle Criterion, but only for time-invariant feedbacks.

In a special case when �(y) � �(y) is a linear map we can relax condition 2) of the above statement.

In this case we require that at least one feedback in the convex hull of [�; �] stabilizes the closed loop.

The statement is given below:
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THEOREM 6 (Popov Criterion - a special case) We consider the nonlinear system (12) for which
h is of class C1 and a nonlinear sector N�;� for which � � � is a linear map (�(y) � �(y) = ky, k > 0).
Suppose the denominator of the HJ equation (12) does not vanish on D and:

1) There exists an antistabilizable solution Va : U � D ! R of class C1 of the equation (12) (U being
a neighborhood of the origin);

2) There exists � 2 [0; 1] such that the feedback:

's(y) = ��(y) + (1� �)�(y)

asymptotically stabilizes the closed loop and U is included in the attraction domain of the origin;
3) The pair (h; f) is zero-state detectable;
then the system (9) is local absolute asymptotic stable with respect to the class N�;�. Set

V2a(x) = Va(x) + �1

Z h(x)

0

�(u)du� �2

Z h(x)

0

�(u)du (15)

and:

Wc(x) = �V2a(x) +
kj�0j
2

h2(x) (16)

where �1� �2 = �0, �1�2 = 0, �1; �2 � 0. Then, for any positive number a > 0 such that the connected
component of the origin of V �12a ([�a; 0]) is a compact set included in U , the compact set W�1

c ([0; a]) is
included in the attraction domain of the origin for any feedback in the sector N�;�. 2

We have to point out that our results are local. If the functions Va from Theorem 4 or Wc(x) from

Theorems 5 or 6 are radially unbounded (i.e. limR!1minkxk=R(�Va) =1, limR!1minkxk=RWc(x) =

1) then the asymptotic stability is in the whole and we obtain a global absolute asymptotic stability

with respect to the considered class.

4 Proof of Circle Criterion

Let us consider the nonlinear Popov system associated to the HJ equation (4):

�
_x = f(x) + g(x)u

J(t1) =
R t1
0
[�(h(x))�(h(x)) + (�(h(x)) + �(h(x)))u + u2]dt

(17)

One can see that the criterion could be rewritten as:

J(t1) =

Z t1

0

(�(h(x)) + u)(�(h(x)) + u)dt (18)

We claim that (17) has the property of minimal stability. Let us choose the neighborhood U from the

de�nition of minimal stability the same with the attraction domain of the feedback '. Let x0 2 U be an

arbitrarly initial state. We set u(t) = '(h(x(t)); t) which is continuous as function of t. Now, obviously

x(t) 2 D and limt!1 x(t) = 0. Since ' 2 N�;�(t) and taking into account (18) we conclude that J(t1) � 0

for any t1 � 0. Now we use the factorization (10) written as:

J(t1) + V (x(t1)) � V (x0) =

Z t1

0

kW (x) + g(x)uk2dt (19)

Here, since the control system (9) is SISO, we have kW (x) +G(x)u k= jW (x) +G(x)uj; for the MIMO

systems the norm sign is more appropriate and the proof goes in the same way. This is the reason

for which we prefer this notation. The right-hand side is positive and V (x(t1)) is bounded (recall that
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limt!1 x(t) = 0 and V (0) = 0) then we can tend t1 ! 1 and obtain �nite values for J(1) andR1
0
kW (x) +G(x)uk2dt. This proves the minimal stability of (17).

Now we apply Lemma 1 and we conclude that Va : U ! R, the antistabilizable solution of (4) is

negative de�nite Va(x) < 0, for x 6= 0. From (19) and (18), by deriving with respect to t1 we get:

dVa

dt
jx =kW (x) +G(x)uk2 � (�(h(x)) + u)(�(h(x)) + u) (20)

We can see that for any feedback 	 2 N�;�(t) the control u(t) = 	(h(x(t)); t) makes negative the second

term of the right-hand side of (20). Then dVa
dt
jx � 0, for any x 2 U .

This proves that we can choose as a Liapunov candidate Liap(x) = �Va(x). Furthermore, from

(20) we can see that Q(x) =
dLiap(x(t))

dt
� 0 ) h(x) � 0 and u(t) � 0 (recall that the sector is

open). Using the zero-state detectability property of (h; f) we �nd that, if there exists a trajectory in

K = fx 2 DjQ(x) = 0g, then it must go to the origin. Thus Va(x(t)) � 0 on such trajectory. Since

Va(x) < 0, 8x 6= 0 we obtain that the maximal invariant set to the vector�eld f(x) + g(x)'(h(x); t)

included in K is N = f0g. Now, using LaSalle's Invariance Principle we obtain that the closed-loop

system with the feedback 	 has the origin an asymptotical stable equilibrium point. Furthermore,

because of the Liapunov function, the largest compact set of the form V �1a ([�a; 0]) � U , with a > 0, is

included in the attraction domain of the origin for any feedback in the sector N�;�(t) (see, for instance,

Theorem 8.1 from [Will70] or Theorem 6, x13 from [SalLe61]). This ends the proof of Theorem 4. 2

5 Proofs of Popov Criteria

The proofs of Popov Criteria follow a similar manner than the Circle Criterion proof. We shall prove

both Theorems. The di�erence between proofs concerns only the claiming that P2 (a Popov system that

will be descibed below) has the property of minimal stability.

Firstly, we de�ne two Popov systems:

P1

�
_x = f(x) + g(x)u

J1(t1) =
R t1
0
[�(h(x))�(h(x)) + (�(h(x)) + �(h(x)) + �0rh(x) � f(x))u + (1 + �0rh(x) � g(x))u2]dt

P2

8<
:

_x = f(x) + g(x)u

J2(t1) =
R t1
0
[�(h(x))�(h(x)) + (�1�(h(x))� �2�(h(x)))rh(x) � f(x) + (�(h(x)) + �(h(x))

+�0rh(x) � f(x) + (�1�(h(x))� �2�(h(x)))rh(x) � g(x))u+ (1 + �0rh(x) � g(x))u2]dt

where: �0 2 R, �1; �2 � 0, �1 � �2 = �0, �1�2 = 0.

We are going to prove �rst that P1 and P2 are weak local equivalent. For, we see that D1 = D2 = D

and we can choose U = D1 = D2 = D and:

~V = �(�1
Z h(x)

0

�(u)du� �2

Z h(x)

0

�(u)du) (21)

Then relations (8) are ful�lled and the two Popov systems are equivalent. Using Corrolary 3 we obtain

that the Popov system P2 has also an antistabilizable solution. We shall denote this solution by V2a.

On one hand we can see that the HJ equation associated to P1 is exactly (12), on the other hand the

criterion of P2 could be rewritten as:

J2(t) =

Z t

0

(�(h(x)) + u)(�(h(x)) + u)d� + �1

Z t

0

(�(h(x)) + u)
dh(x)

d�
d� � �2

Z t

0

(�(h(x)) + u)
dh(x)

d�
d�

Let us choose a feedback ' 2 N�;�. Let us consider u = �'(y) and denote by:

	1(y1) =

Z y1

0

(u+ �(y))dy (22)
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	2(y1) =

Z y1

0

(u+ �(y))dy (23)

Then the following inequalities hold:

Z t

0

(u+ �(y))(u + �(y))d� � 0

	1(y1) � 0

	2(y1) � 0

and the quadratic criterion becomes:

J2(t) =

Z t

0

(u+ �(y))(u + �(y))d� + �1	1(y(t)) � �1	1(y(0)) � �2	2(y(t)) + �2	2(y(0)) (24)

With �1; �2 � 0 we have the following boundedness:

J2(t) � ��1	1(y(0)) + �2	2(y(0)) (25)

We are going to prove now that P2 has the property of minimal stability. In the case �0 = 0 Popov's

Criterion turns into Circle Criterion and the minimal stability property is already proved. Then we

assume that �0 6= 0.

In this point we can go on in di�erent ways for Theorem 5 and Theorem 6.

Firstly the proof of minimal stability under the assumptions of Theorem 5: Let us consider the case

�0 > 0 . Then �1 = �0 and �2 = 0. We choose u = ��(y) that stabilizes the closed loop and moreover:

J2(t) = 0 for any t > 0. Then J2(1) is �nite, J2(1) = 0 � 0 and limt!1 x(t) = 0 for any x(0) 2 U . In
the case �0 < 0 we follow the same scheme. Now �1 = 0 and �2 = ��0 and we choose u = ��(y). We

obtain the same conclusions. This proves that P2 has the property of minimal stability.

Now the proof of minimal stability uder the conditions of Theorem 6. We consider the case �0 > 0

(the case �0 < 0 is similar). Then �1 = �0 and �2 = 0. Now, consider u = �'s(y) + v. Then the

dynamics becomes:

_x = f(x) � g(x)'s(h(x)) + g(x)v

and the criterion J2 becomes:

J2(t) =

Z t

0

(�(1� �)ky + v)(�ky + v + �0
dy

d�
)d�

If � = 1 then we take v = 0 and then we obtain as above the minimal stability. Let us set a new variable:

~y = y � 1
(1��)k

v. With a little algebra one can bring the criterion into the form:

J2(t) = ��(1� �)k2
Z t

0

~y2d� �
(1� �)k�0

2
~y2jt0 � k

Z t

0

~y(v +
�0

k

dv

d�
)d�

We choose v to be the solution of the di�erential equation: �0
k

dv

dt
+ v = 0 with initial condition v(0) such

that ~y(0) = 0: v(0) = (1� �)kh(x0). Then:

v(t) = (1� �)kh(x0)exp(�
k

�0
t)

9



and

J2(t) = ��(1 � �)k2
Z t

0

~y2d� �
(1� �)k�0

2
~y2(t) � 0

It remains to prove that limt!1 x(t) = 0. (since there exists a solution of the HJ equation associated to

P2 one can prove that J2(1) is �nite, using the factorization (6)). For, we observe that the dynamics

can be brought into the following form:

_x = fs(x) + g(x)v

_v = � k

�0
v

(26)

where fs = f � g � ('s � h) is a vector �eld having at the origin an asymptotically stable equilibrium

and for any x(0) = x0 we take v(0) = (1 � �)kh(x0). We apply now a well-known property of cascade

systems (see for instance [Vidy80]) and obtain that the extended system (26) has at (�x; ��) = (0; 0) a

local asymptotic stable equilibrium. Now we can shrink enough the neighborhood of the origin to obtain

that limt!1 x(t) = 0 when we initialize the system in this neighborhood. Then P2 has the property of

minimal stability.

Now we apply Lemma 1 and we get that V2a(x) < 0 for x 6= 0. Furthermore, the connection between

the antistabilizable solution of P2 and that of (12) (or P1) is given by (13).

As Liapunov candidate we consider:

Liap(x) = �V2a(x) � �1	1(h(x)) + �2	2(h(x)) (27)

Since 	1 � 0, 	2 � 0 (given by (22) and (23)) and V2a < 0 we have Liap(x) > 0, for x 6= 0, Liap(0) = 0.

The factorization (6) becomes (using (24)):

Liap(x) = Liap(x0) +

Z t

0

(u+ �(h(x)))(u+ �(h(x)))d� �
Z t

0

kWa(x) +G(x)uk2d�

Then, for the derivative we get:

dLiap(x)

dt
= (u+ �(y))(u + �(y))� kWa(x) +G(x)uk2

Since u = �'(y) and ' 2 N�;� we obtain that
dLiap(x)

dt
� 0, for any x and

dLiap(x)

dt
� 0 ) h(x) � 0 on

trajectory. Using the zero-state detectability property of our system and LaSalle's Invariance Principle

(as in the proof of the Circle Criterion) we obtain that the origin of the closed loop system with the

feedback u = �'(y) is asymptotically stable.

In order to obtain an uniformley estimation of the attraction basin of the origin we try to uniformly

bound the Liapunov functions. Since 	1 � 0 and 	2 � 0 we get: �V2a(x) � Liap(x) for any x 2 U and

' 2 N�;�. Next we see that:

�	1(x) =

Z h(x)

0

('(u)� �(u))du �
Z h(x)

0

(�(u) � �(u))du

	2(x) =

Z h(x)

0

(�(u) � '(u))du �
Z h(x)

0

(�(u) � �(u))du

and �1 + �2 = j�0j. Then:

Liap(x) � �V2a(x) + j�0j
Z h(x)

0

(�(u) � �(u))du

10



We have denoted by W (x) the right hand side of the above inequality. So we have obtained the following

boundedness:

�V2a(x) � Liap(x) � Wc(x)

for any x 2 U and ' 2 N�;�.

Now if V �12a ([�a; 0]) is a connected compact set then also are Liap�1([0; a]) and W�1
c ([0; a]) and the

last one is included in every Liap�1([0; a]). Now the proofs of both Theorems are complete.

6 An Example

Let us consider the following system:

�
_x = �x3 � xu

y = x2
(28)

and a sector of the form:

�(x) = 0 ; �(x) = kx ; k > 0

We look for the largest k such that the closed loop system is absolute asymptotic stable with respect to

the sector N�;� . First of all we see that the closed loop with some feedback ' 2 N�;� has the form:

_x = �x3 + x'(x2)

and around the origin (if ' is of class C1): '(x2) = '0(0)x2 +O(x4) . We get:

_x = �(1 � '0(0))x3 +O(x4)

and the origin is asymptotically stable if '0(0) < 1. Then we expect that the largest value of k to be 1.

On the other hand, Theorem 7 can not be applied here because the linearization of (28) is trivial.

Then we use the Circle Criterion (4) to �nd conditions on k.

The equation (11) takes the form:

�x2((
dV

dx
)
2
+ 2(2� k)x

dV

dx
+ k2x2) = 0

and the solutions of this di�erential equation are:

Vs;a(x) =
k � 2� 2

p
1� k

2
x2

In order to check which one is the unstabilizable solution, we compute the feedback (3) and we get:

us;a(y) = (�1�
p
1� k)y

Then, we plug in the dynamics (28) and we obtain that the antistabilizable solution coresponds to the

minus sign: Va(x) = (k
2
� 1 �

p
1� k)x2. We see that this solution is de�ned on the whole axis and,

furtermore, it is radially unbounded (all of these for k < 1).

The second condition of Theorem 4 is ful�lled by , for instance, '(y; t) = k

2
y and we also see that the

pair (h(x) = x2; f(x) = �x3) is zero-state observable.
Then all conditions of Theorem 4 are ful�lled and we conclude that the system (28) is globally absolute

asymptotic stable with respect to the class N�;�(t) for k = 1.

11



7 Connexions with the Linearized System

Let us consider the linearized system of (9) in the form:�
_x = Ax+ bu

y = cTx

and for the sector: k1 = �0(0), k2 = �0(0). The equations (11) and (12) require quadratic solutions of

the form: V (x) = 1
2
xTXx where X is solution of one of the following Riccati equations:

ATX +XA � (Xb +
k1 + k2

2
c)(Xb +

k1 + k2

2
c)
T
+ k1k2cc

T = 0 (29)

ATX +XA �
1

1 + �0cT b
(Xb +

k1 + k2

2
c+

�0

2
AT c)(Xb +

k1 + k2

2
c+

�0

2
AT c)T + k1k2cc

T = 0 (30)

The existence condition of a solution for Riccati equation reduces, in fact, to a frequence condition via

Popov's Positivity Theorem (we refer the reader to [Popov73] or to [IoWe93]). For instance, the Popov

function associated to the above Riccati equations are:

�1(s) = 1 +
k1 + k2

2
(H(�s) +H(s)) + k1k2H(�s)H(s)

�2(s) = 1 +
k1 + k2

2
(H(�s) +H(s)) + k1k2H(�s)H(s) +

�0

2
s(H(s) �H(�s))

where H(s) = cT (sI � A)
�1
b, and the frequence condition is �(j!) � 0, 8! 2 R. If, moreover, the

frequence inequality is strict and a controllability condition on the imaginary axis is ful�lled, then it results

the dichotomy of the associated linear Hamiltonian and hyperbolicity of the nonlinear Hamiltonian vector

�eld. Then the antistabilizable solution of the HJ equation is exactly the unstable manifold associated

to the Hamiltonian vector �eld (for details see [Schaf91]). To be more speci�c we consider the following

realisations of the above Popov functions:

�1(s) =

2
4 A 0 b

k1k2cc
T �AT �k1+k2

2
c

k1+k2
2

cT bT 1

3
5

�2(s) =

2
4 A 0 b

k1k2cc
T �AT �k1+k2

2
c� �0

2
AT c

k1+k2
2

cT + �0
2
cTA bT 1 + �0c

T b

3
5

So we get the following result:

THEOREM 7 If the pair (A; b) is controllable, the frequence inequality is strict and the realisation
of Popov function has no uncontrollable modes on the imaginary axis (all these conditions equivalent
with the existence of both the stabilizable and anstistabilizable solutions of Riccati equation (29) or (30))
then the HJ equation of the nonlinear system (equation (11) or (12)) has locally both antistabilizable and
stabilizable solutions. 2

8 Criteria of Absolute Stability for MIMO Systems

We can apply the same approach to nonlinear a�ne systems with many feedbacks. In this case we

consider a MIMO nonlinear a�ne system with a same number of inputs and outputs, say m:�
_x = f(x) + g(x) � u
yi = hi(x)

(31)

12



where f; gi are vector �elds of class C1 on D � Rn, hi are continuous scalar functions de�ned on D and

f(0) = 0, h(0) = 0. We also consider two families of continuous scalar functions � = (�1; : : : ; �m); � =

(�1; : : : ; �m) �i; �i : R! R such that: �i(0) = 0, �(0) = 0 and y�i(y) � y�i(y). With these families we

consider the following sectors:

N
(m)

�;� (t) = N�1;�1(t)� N�2;�2(t) � : : :�N�m;�m(t)

N
(m)

�;�
= N�1;�1 � N�2;�2 � : : :� N�m;�m

(32)

The problem can be formulated in the same way as in 3 with the remark that the feedback ' =

('1; : : : ; 'm) belongs now to one of the classes de�ned above (see �gure 2). We are going now to state

_x = f(x) + g(x) � u
y = h(x)

'1

-

�

g --
u1 y1in1 = 0

6 -g- -um� yminm = 0

'm �

6�

Figure 2: MIMO Closed-loop System

in the case of MIMO systems the corresponding theorems to 4 - 6. Since the proofs of these results are

similar with those presented before we do not prove them but we point out, for the convenience of the

reader, the nonlinear Popov systems considered in the proof of each one.

THEOREM 8 (Circle Criterion - nonlinear MIMO systems) Let us consider the MIMO system

given in (31) and a sector N
(m)

�;� (t) as in (32). For m positive real numbers r1; : : : ; rm > 0 we consider
the following HJ equation:

rV (x) � f(x)�
1

4

mX
i=1

1

ri
(rV (x) � gi(x) + ri(�i(hi(x)) + �i(hi(x))))

2
+

mX
i=1

ri�i(hi(x))�i(hi(x)) = 0 (33)

If the following conditions are ful�lled:

1) There exists an antistabilizable solution Va : U � D ! R of class C1 of (33) (U being a neighborhood
of the origin);

2) There exists a feedback '(:; :) 2 N
(m)

�;� (t) (' = ('1; : : : ; 'm)) that asymptotically stabilizes the closed
loop and has U included in the attraction domain;

3) The pair (h; f) is zero-state detectable (h = (h1; : : : ; hm));

then the system (31) is local absolute asymptotic stable with respect to the class N
(m)

�;�
and, furthermore,

the largest connected compact set of the form V �1a ([�a; 0]) � U is included in the attraction domain of

the origin for any nonlinearity in the sector N
(m)

�;�
(t). 2

Remark. In the proof of Theorem 8 we need consider the following nonlinear Popov system:

P

�
_x = f(x) + g(x) � u

J(t1) =
R t1
0

Pm

i=1 ri(�i(hi(x)) + ui)(�i(hi(x)) + ui)dt

We see that we can scale the constants ri in (33) without lose of generality; then we can require, for

instance,
Pm

i=1 ri = 1. We state now the two versions of Popov criterion for the MIMO systems:

13



THEOREM 9 (Popov Criterion - nonlinear MIMO systems) We consider the nonlinear MIMO

system (31) for which h is of class C1, and N (m)

�;�
a sector. Suppose the denominators of the following HJ

equation do not vanish on D:

rV (x)�f(x)�
1

4

mX
i=1

1

ri

(rV (x) � gi(x) + ri(�i(hi(x)) + �i(hi(x)) + �i0rhi(x) � f(x)))
2

1 + �i0rhi(x) � gi(x)
+

mX
i=1

ri�i(hi(x))�i(hi(x)) = 0

(34)

where �10; : : : ; �
m
0 2 R are real parameters and r1; : : : ; rm > 0 are positive numbers as above. If the

following conditions are ful�lled:
1) There exists an antistabilizable solution Va : U � D ! R of class C1 of the equation (34) (U being

a neighborhood of the origin);
2) There exists a feedback ' = ('i) whose entries ful�les the following rules:

� If �i0 < 0 then 'i(y) = �i(y) ;

� If �i0 > 0 then 'i(y) = �i(y) ;

� If �i0 = 0 then 'i(:) 2 N�i;�i ;

that asymptotically stabilizes the closed loop and U is included in the attraction domain;
3) The pair (h; f) is zero-state detectable;
then the system (31) is local absolute asymptotic stable. Set:

V2a(x) = Va(x) +

mX
i=1

�i1

Z hi(x)

0

�i(u)du�
mX
i=1

�i2

Z hi(x)

0

�i(u)du

and

Wc(x) = �V2a(x) +
mX
i=1

j�i0j
Z hi(x)

0

(�i(u)� �i(u))du

where �i1��i2 = �i0; �
i
1�

i
2 = 0; �i1; �

i
2 � 0. Then, for any positive number a > 0 such that the connected

component of the origin of V �12a ([�a; 0]) is a compact set included in U , the compact set W�1
c ([0; a]) is

included in the attraction domain of the origin for any feedback in the sector N
(m)

�;� . 2

THEOREM 10 (Popov Criterion - MIMO systems, special case) Let us consider the nonlinear

system (31) for which h is of class C1 and a nonlinear sector N
(m)

�;�
for which �i � �i are linear maps

(�i(y) � �i(y) = kiy, ki > 0). Suppose the denominators of the HJ equation (34) do not vanish on D

and �i0, ri are as above. Then, if:
1) There exists an antistabilizable solution Va : U � D ! R of class C1 of the equation (34) (U being

a neighborhood of the origin);
2) There exists �i 2 [0; 1] such that the feedback:

's(y) = (�i�i(y) + (1� �i)�i(y))

asymptotically stabilizes the closed loop and U is included in the attraction domain of the origin;
3) The pair (h; f) is zero-state detectable;
then the system (31) is local absolute asymptotic stable. Set:

V2a(x) = Va(x) +

mX
i=1

�i1

Z hi(x)

0

�i(u)du�
mX
i=1

�i2

Z hi(x)

0

�i(u)du
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and

Wc(x) = �V2a(x) +
mX
i=1

kij�i0j
2

h2i (x)

where �i1��i2 = �i0; �
i
1�

i
2 = 0; �i1; �

i
2 � 0. Then, for any positive number a > 0 such that the connected

component of the origin of V �12a ([�a; 0]) is a compact set included in U , the compact set W�1
c ([0; a]) is

included in the attraction domain of the origin for any feedback in the sector N
(m)

�;�
. 2

Remarks. The equivalent nonlinear Popov systems considered in the proof of previous theorems are:

P1

8<
:

_x = f(x) + g(x) � u
J1(t1) =

R t1
0

Pm

i=1[ri�i(hi(x))�i(hi(x)) + ri(�i(hi(x)) + �i(hi(x)) + �i0rhi(x) � f(x))ui+
+ri(1 + �i0rhi(x) � gi(x))u2i ]dt

P2

8<
:

_x = f(x) + g(x) � u
J2(t1) =

R t1
0

Pm

i=1 ri(�i(hi(x)) + ui)(�i(hi(x)) + ui)dt+
R t1
0

Pm

i=1 �
i
1ri(�i(hi(x)) + ui)

dhi(x)

dt
dt�

�
R t1
0

Pm

i=1 �
i
2ri(�i(hi(x)) + ui)

dhi(x)

dt
dt

The other remarks concerning the global absolute asymptotic stability also hold here in the same

form.

9 Conclusions

In this paper the problem of absolute asymptotic stability for nonlinear a�ne control systems is presented

and su�ciency conditions of absolute asymptotic stability are given.

The main tools for proving these criteria are the Hamilton-Jacobi equation and the nonlinear Kalman-

Yakubovich-Popov system associated to a nonlinear Popov system. Connexions between these objects

are presented in the �rst section.

In the second section we are dealing with nonlinear Popov system composed by a nonlinear a�ne

dynamics and a quadratic criterion in control. We describe two properties of this system, namely the

minimal stability and the equivalence of nonlinear Popov systems. The �rst property guarantees the sign

of the antistabilizable solution of HJ equation, whereas the second property enables us to obtain some

simpler equivalent HJ equations.

In the next section we present the statement of the criteria. These correspond, in the liniar case, to

Circle and Popov Criteria. We point out that our criteria give not only conditions of (local) absolute

asymptotic stability, but also they give some uniform estimations of the attraction domain of the origin

(which is supposed to be the equilibrium point). The Circle Criterion corresponds to a feedback inde-

pendent Liapunov function obtained from the solution of some HJ equation (equation (11)). For the

linear Popov Criterion we obtain two versions for nonlinear statement. They di�er by some condition

which achieves the minimal stability of a certain nonlinear Popov system (P2 in the proof): the �rst

version applyes to general sectors and requires that a boundary feedback asymptotically stabilizes the

closed loop, whereas the second version is useful only for special sectors, namely for those which ful�lls

the condition � � � is a linear map.

In the next two sections we prove these criteria using the properties of nonlinear Popov systems and,

particularly, relation (6).

Then we give an example of dimension two.

In the seventh section we present connexions with the linearized system. Actually, for linearized

systems the HJ equations turn into the classical Algebraic Riccati Equation and the quadratic form

15



constructed with the hermitic solutions of ARE are lower order approximations of solutions of the original

HJ equation. Furthermore, as it was shown by van der Schaft, the antistabilizable (stabilizable) solution

of HJ equation corresponds, in the case of dichotomy, to the unstable (stable) manifold of the Hamiltonian

vector �eld associated to the nonlinear Popov system.

Further on, we generalize these criteria to the case of multiple feedbacks. We present only the

statement of these criteria and we give the form of nonlinear Popov systems involved in the proofs.

From this point one can study some speci�c cases, for instance the case of bilinear systems, and

develop a theory of the HJ equations and nonlinear Popov systems for these systems.

References

[Barb59] I.Barb�alat , Syst�emes d'�equations di��erentielles d'oscilations non lin�eaires, Rev.des

math�ematiques pures et appliqu�ees, IV, 2 (1959), 267{270

[Barbu74] V.Barbu , Semigroups of Nonlinear Contractions in Banach Spaces, Academic Press,

Bucharest 1974 (in romanian)

[Brock66] R.W.Brockett, The Status of Stability Theory for Deterministic Systems, IEEE Transactions

on AC-12 (1966), 596{606

[HaBe94] W.M.Haddad D.S.Bernstein , Explicit Construction of Quadratic Lyapunov Functions for the
Small Gain, Positivity, Circle, and Popov Theorems and Their Application to Robust Stability,
(to be published) 1994

[HiMo76] D.Hill P.Moylan, The Stability of Nonlinear Dissipative Systems, IEEE Transactions on AC-21

(1976), 708{711

[IoWe93] V.Ionescu M.Weiss, Continuous and Discrete-Time Riccati Theory: A Popov-Function Ap-
proach, Linear Algebra and Its Applications, 193 (1993), 173{209

[Isid91] A.Isidori, Feedback Control of Nonlinear Systems, in Proceedings of the 1st European Control

Conference, Grenoble (1991), 1001{1012

[SalLe61] J.LaSalle S.Lefschetz, Stability by Liapunov's Direct Method, Academic Press 1961

[Moyl74] P.J.Moylan, Implications of passivity in a class of nonlinear systems, IEEE Transactions on

AC-19 (1974), 373{381

[Popov73] V.M.Popov, L'Hyperstablit�e des systemes automatiques, edition de l'Acad�emie Roumaine et

Dunod-Paris, 1973

[Savk93] A.V.Savkin, Generalizations of the Kalman-Yakubovich Lemma and Their Applications, in
Proceedings of the 12th Symposium of IFAC, Sydney, Australia, July 1993

[Schaf91] A.J.van der Schaft, On a State Space Approach to Nonlinear H1 control, Systems & Control

Letters, 16 (1991), 1{8

[Vidy80] H.Vidyasagar, Decomposition Techniques for Large-Scale Systems with Nonadditive Interac-
tions: Stability and Stabilizability, IEEE Trans. on Autom. Contr., vol. AC-25, no.4 (1980),

773{779

[Will70] J.L.Willems, Stability Theory of Dynamical Systems, Nelson, 1970

[Will72] J.L.Willems, Dissipative Dynamical Systems, Part I: General Theory, Archive for Rat. Mech.

Anal., vol.45 no.5 (1972), 321{351

16


