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Abstract

Normalizing flows provide an elegant approach
to generative modeling that allows for efficient
sampling and exact density evaluation of unknown
data distributions. However, current techniques
have significant limitations in their expressivity
when the data distribution is supported on a low-
dimensional manifold or has a non-trivial topol-
ogy. We introduce a novel statistical framework
for learning a mixture of local normalizing flows
as “chart maps” over the data manifold. Our
framework augments the expressivity of recent ap-
proaches while preserving the signature property
of normalizing flows, that they admit exact den-
sity evaluation. We learn a suitable atlas of charts
for the data manifold via a vector quantized auto-
encoder (VQ-AE) and the distributions over them
using a conditional flow. We validate experimen-
tally that our probabilistic framework enables ex-
isting approaches to better model data distributions
over complex manifolds.

1 INTRODUCTION

Generative modeling is a machine learning paradigm that
aims to learn data distributions and sample from it. If the
data is drawn from a random variable x ∼ p(x), then one
way to do this is to directly model p(x) via a parameterized
model (θ) so that pθ(x) ≈ p(x). Such a model can then
be used to generate new samples, which are expected to be
statistically indistinguishable from the observed samples.
Moreover, generative models that learn p(x) are useful for
data augmentation, outlier detection, domain transfer [1, 2],
and as priors for other downstream tasks [3, 4, 5].

*Equal contribution
†Work was performed while at Verisk Analytics.

Among the most successful generative models are deep
latent variable models, which assume that the latent factors
of variation underlying the generative process of the data
follow a simple distribution, such as a Gaussian or a uniform
distribution. The non-linear function transforming this latent
space to the data space (or vice-versa) is parameterized
as a neural network and learned using gradient descent.
Depending upon their formulation, there are three broad
categories of deep latent variable models - GANs [6], VAEs
[7], and normalizing flows.

In this work, we focus on normalizing flows, a class of deep
latent variable models introduced in [8] that support effi-
cient sampling, exact density estimation, and inference [9].
A normalizing flow maps the data space to a latent space
through a series of diffeomorphisms (differentiable, bijec-
tive transformations with differentiable inverses). The data
is assumed to follow an analytically computable distribution
in the latent space, typically a Gaussian. Since the mapping
is a diffeomorphism, the density in the data space can be
obtained using the change of variables formula. To generate
new samples using a flow, one can sample from the latent
distribution and use the inverse transformation to map them
to the data space. This makes normalizing flows powerful
generative models that support exact density evaluation in
contrast to GANs and VAEs.

Despite the advantages of normalizing flows over other
generative models, their diffeomorphic requirement poses
several restrictions. Firstly, a continuous bijective transfor-
mation with continuous inverse preserves the topology of
its domain. Therefore, the data space is required to be topo-
logically equivalent to the support of the latent distribution,
typically to D dimensional Euclidean space since the la-
tent distribution is assumed to be a Gaussian. However, real
data distributions typically differ from Euclidean space in
many topological respects, such as the number of connected
components, the presence of holes, etc. A normalizing flow
would thus fail to model such data distribution accurately.
Note, as an aside, that other generative models like GANs
also suffer from these topological issues [10].
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(a) Real Data (b) Classic Flow (c) VQ-Flow

Figure 1: Augmentation of our framework (c) enables a
classic flow (b) to better model the discontinuities in the data
manifold through a learned atlas of charts(shaded region).

A particularly troubling consequence of the continuous in-
vertibility of flow transformations is that they are dimension-
ality preserving. However, according to the manifold hypoth-
esis, high dimensional real-world data living in X ≃ RD is
often supported on a d << D manifold of the embedding
space. To efficiently learn such distributions using flows,
one needs to design expressive transformations that can map
from a d dimensional latent space to a the D dimensional
data space without making learning intractable. Recent work
using stochastically invertible tall matrices [11] and dimen-
sion raising conformal embeddings [12] have paved the way
in designing such transformations, however in both works
expressivity is limited by the fact that the dimension chang-
ing operations are restricted to be linear (in [11]) or made
up of Möbius transformations (in [12]).

In this work, we propose to address the above limitations by
parameterizing a family of normalizing flows to compose
an atlas of charts over the data manifold. As the topology of
the data manifold is expected to be “locally” equivalent to
Euclidean space, a local normalizing flow should be able to
model the local distribution over a chart region effectively.
Further, by learning a mixture of flows over well-chosen
charts, our approach compensates naturally for the limited
expressiveness of existing flows. We summarize the main
contributions of this work below:

• We provide an understanding of the limited expressive
power of existing flow-based models in modeling data
distributions over complex topological spaces.

• We present a statistical framework for defining an ex-
pressive mixture of local normalizing flows that is
flexible and generic enough to be used with existing
approaches. We show that this framework allows for
efficient sampling, inference of latent variables, and
exact density evaluation while improving expressivity.

• We validate experimentally that the proposed approach
improves flows for density estimation and sample gen-
eration, and is thus able to resolve many of the topo-
logical restrictions on expressivity imposed by using
global diffeomorphisms.

2 BACKGROUND

Given data {xn}Nn=1 ⊂ X ≃ RD distributed according to
an unknown distribution p(x), a normalizing flow maps it
through a diffeomorphism f : X → Z to a latent space Z ≃
RD such that z = f(x) is simply distributed, for example
z ∼ q(z) where q = N(0, I). Recall that a diffeomorphism
is a differentiable map that is bijective and whose inverse is
also differentiable. Typically one denotes by g the inverse
of f and parameterizes the normalizing flow as x = gθ(z),
where θ is the vector of learnable model parameters. The
process of going from the latent space to data space is called
generation or sampling and is accomplished by the function
gθ, while the inverse procedure is termed inference and is
accomplished by fθ = g−1

θ :

fθ : X → Z
x 7→ fθ(x)︸ ︷︷ ︸
Inference

gθ : Z → X
z 7→ gθ(z)︸ ︷︷ ︸
Sampling

(1)

The approximation pθ(x) to the true probability density p(x)
is then obtained from q(z) through the change of variables
formula as:

pθ(x) = q(fθ(x))|det[Jfθ(x)]| (2)

As compositions of diffeomorphisms are also diffeomor-
phisms, one can design expressive flows by composing in-
dividual transformations that have simple to compute in-
verses and Jacobian determinants. Suppressing the vector
of model parameters θ, we will use the notation f(x) =
f1 ◦ · · · ◦ fL(x) where f1, . . . , fL are assumed to have eas-
ily computable Jacobian determinants and inverses. Define
recursively xl−1 = f l(xl), 1 ≤ l ≤ L, with xL = x. Note
that xl = f l+1 ◦ · · · ◦ fL(x) and x0 = f(x). One can then
write the log-likelihood as:

log p(x) = log q(z) + log

L∏
l=1

|det[Jf l(xl)]|

= log q(f(x)) +

L∑
l=1

log |det[Jf l(xl)]|

(3)

A given layer f l of the normalizing flow will depend only
on a subset θl of the parameters of θ := (θ1, . . . , θL). Tem-
porarily adding back in the θ dependence of fθ, maximum
likelihood estimation of θ then yields the following opti-
mization problem:

θ∗ = min
θ=(θ1,...,θL)

1

N

N∑
n=1

− log pθ(xn)

= min
θ=(θ1,...,θL)

1

N

N∑
n=1

{
− log q(fθ(xn))

−
L∑

l=1

log |det[Jf l
θl
(xl

n)]|
}

(4)



3 RELATED WORK

Normalizing flows have come a long way since it was intro-
duced in [9, 13], with much efforts focused on expanding
their scalability and applicability. This has resulted in sev-
eral different formulations [14, 15, 16, 17], each with a
multitude of proposed architectures [18, 19, 20, 21, 22, 23],
aimed at defining expressive yet analytically invertible flow
transformations with efficiently computable jacobian de-
terminants. However, as these approaches define invertible
transformations in Euclidean space, they are dimensionality
preserving and less suited for modeling distributions over
lower dimensional manifolds [24, 25]. Subsequent works
have tried to address this challenge by building injective
flows [26, 11, 27, 28, 29, 30]. However, they trade off the
benefits of dimensionality change to intractable density esti-
mation or stochastic inverses. The work by [12] overcomes
the above limitations using conformal embeddings, but has
limited expressive power, as we show in this work. One way
to improve the expressivity of all the above approaches, and
enable them to overcome topological constraints [31], is to
relax their global diffeomorphic requirement by defining a
mixture of flows. Prior works in this direction have looked
at infinite mixtures by defining flows in a lifted space [32]
or by using continuous indexing [33]. However, their added
expressivity comes at the cost of tractable density compu-
tation, and one has to rely on variational approximations
to train the model. A manifold geometric approach to nor-
malizing flows is also taken in [34] and [35], however in
contrast to this work these techniques assume the manifold
and its Riemannian geometry are known. On similar lines
with this work, [36] proposes to use a finite mixture of flows
through piecewise-invertible transformations over partitions
of the data space by introducing both real and discrete val-
ued latent variables in the flow. However, this formulation
introduces discontinuities in the model density that leads
to unstable training [33], necessitating the enforcement of
boundary conditions through ad-hoc architectural changes.
It is therefore limited in its generalizability to novel flow for-
mulations. Our work, on the other hand, by decoupling the
partition learning from the flow training, introduces a more
generic and scalable framework that can aid existing flows
to overcome topological constraints and learn complex data
distributions efficiently.

4 METHODOLOGY

A traditional normalizing flow provides a global diffeo-
morphism between the latent space Z and the data space
X ≃ RD, and as such requires the latent space to have
the same dimension as the data space. This can lead to nu-
merical instability when the data is supported on a d < D
dimensional manifold M ⊂ X because the learned trans-
formation will tend to become “less and less injective” as it
seeks to restrict its range to M [24, 25].

One way to overcome this challenge is to build transfor-
mations that map across dimensions while preserving in-
vertibility on its image. Unfortunately, the natural approach
of post-composing a d dimensional bijective normalizing
flow g : Z → U with a dimension-raising embedding
e : U → X leads in general to an intractable likelihood
since the determinant in the change of variables formula
p(x) = q(f(x))|Det[JgJ

T
e JeJg]|−

1
2 no longer separates

into a product of simpler determinants. We will focus on
the solution to this issue developed in [12], namely to
post-compose the d dimensional bijective normalizing flow
g : Z → U with a dimension raising conformal embed-
ding c : U → X . An alternative solution developed in
[11] is to use a linear dimension raising embedding and
invert it stochastically, but this approach relies on the di-
mension change operation being linear which is restrictive.
The approach taken in [12] hinges on the fact that for every
u ∈ U the Jacobian Jc(u) satisfies Jc(u)TJc(u) = λ(u)2I
for λ : U → R, thus

det[JT
c◦gJc◦g]

1
2 = det[JT

g JT
c JcJg]

1
2

= |λ(u)|det[JT
g Jg]

1
2

= |λ(u)||det[Jg]|

(5)

This splitting keeps the likelihood computation tractable,
but the requirement that M be the range of a conformal
embedding is artificially restrictive. This issue is exacer-
bated by the necessity of parameterizing c. As noted in
[12] the easiest way to do so is to let c = cJ ◦ · · · ◦ c1
where each cj is either a trivially conformal zero padding
operation or a dimension preserving conformal transfor-
mation. A dimension preserving conformal transforma-
tion f : Rd → Rd with d > 2 is restricted by Liou-
ville’s theorem to be a Möbius transformation, of the form
f(x) = (A, a, b, α, ϵ)(x) = b + α(Ax − a)/||Ax − a||ϵ
where A ∈ O(d) is an orthogonal matrix, α ∈ R, a, b ∈ Rd,
and ϵ is either 0 or 2. Though it might initially appear that the
composition of many such operations would give increased
expressive power, the group structure of the Möbius transfor-
mations prevents this. Indeed, if ps : Rd → Rd+s is the zero
padding operation, m1 = (A1, a1, b1, α1, ϵ1) is a d dimen-
sional Möbius transformation and m2 = (A2, a2, b2, α2, ϵ2)
is a d+s dimensional Möbius transformation then it is easily
verified that for x ∈ Rd

m2 ◦ ps ◦m1(x) = (m2 · m̃1)(ps(x)) (6)

Where m̃1 is the d+ s dimensional Möbius transformation

m̃1 = (

[
A1 0
0 Is×s

]
, ps(a1), ps(b1), α1, ϵ1) (7)

Thus, this parametrization yields c as a Möbius transforma-
tion of RD composed with pD−d. Practically speaking, if
c is parameterized as above, the assumption that M is the
image of a global conformal embedding severely limits ex-
pressiveness. The class of global conformal embeddings is



not subject to Liouville’s theorem and is far richer than the
set of Möbius transformations, but it is hard to parameterize.

4.1 DIFFERENTIAL GEOMETRY OF
CONFORMALLY FLAT MANIFOLDS

A weaker and more natural assumption than M being the
image of a conformal embedding is that M is locally con-
formally flat. Recall that if f : (N , η1) → (M, η2) is a map
between differentiable manifolds N and M with metrics
η1 : N×TN×TN and η2 : M×TM×TM respectively
then the pullback f∗η2 of the metric η2 through f is defined
via:

f∗η2 : N × TN × TN → R
f∗η2(y, v, w) = η2(f(y), Df(y)(v), Df(y)(w))

(8)

With this in mind a d dimensional manifold M is called
locally conformally flat if η1 =

∑d
i=1 dy

2
i is the flat met-

ric and for any x ∈ M there is a neighborhood U ∋ x,
an open set O ⊂ Rd, a diffeomorphism f : O → U ,
and a differentiable scalar function λ : O → R such that
f∗η2(y, ·, ·) = λ(y)η1(·, ·) for all y ∈ O [37]. An alternate
definition replaces Rd with a flat manifold (defined as hav-
ing an identically vanishing Riemannian curvature tensor),
but this definition is equivalent to the above since any d
dimensional flat manifold is locally isometric to Rd (not
globally isometric, for example tori are flat when equipped
with appropriate coordinates) [38]. In our case the metric
η2 is assumed to be inherited from the Euclidean metric on
X ≃ RD.

The notion of local conformal flatness provides far more
flexibility than its global counterpart. It is well known, for
example, that every 2 dimensional Riemannian manifold
is locally conformally flat, but even the sphere S2(R) is
not globally conformally flat (by contrast an explicit local
conformal equivalence of Sd(R) to Rd is given by stereo-
graphic projection from the north and south poles) [38]. In
general, criteria are known for a Riemannian manifold of
dimension d > 2 to be locally conformally flat: For d = 3
a pseudo-Riemanian manifold is locally conformally flat if
and only if the Cotton tensor vanishes everywhere, for d ≥ 4
a pseudo-Riemannian manifold is locally conformally flat if
and only if the Weyl tensor vanishes everywhere [38]. The
question of which manifolds are globally conformally flat is
more difficult, and in applied problems this requirement is
artificially restrictive.

4.2 LOCAL NORMALIZING FLOWS

We propose to break up the data manifold M into an atlas
of overlapping charts V1, . . . , VK .

Definition 1 (See [37]). An atlas of (smooth) charts for a
d dimensional manifold M is a collection of subsets of M,

{Vk}Kk=1 and a collection of subsets {Pk}Kk=1 of Rd such
that

⋃K
k=1 Vk = M and a collection of invertible maps

fk : Vk → Pk such that the “transition maps” fi ◦ f−1
j :

fj(Vi ∩ Vj) → fi(Vi ∩ Vj) are smooth.

We will assume charts of the form Vj = Uj ∩ M and
Pj = fj(Vj) where Uj are learned open subsets of X
such that {xn}Nn=1 ⊂

⋃K
k=1 Uk and f1, . . . , fK are con-

formal normalizing flows. In a slight abuse of terminol-
ogy we will also refer to U1, . . . , Uk as charts. To handle
dimensionality change, we assume that the manifold M
is locally conformally flat and of dimension d, implying
that for Vj sufficiently small there exists Dk ⊂ U and a
conformal dimension raising map ck : U → X so that
Vk = ck(Dk) = ck ◦ gLk ◦ · · · ◦ g1k(Pk).

Because chart regions may in general overlap, we propose
to choose between them probabilistically. Specifically, given
U1, . . . , UK that cover the data manifold M, we model p(x)
via a latent random variable z that takes values in Z and a
“chart picking” discrete random variable k that takes values
in {1, . . . ,K}. For k = 1, . . . ,K let gk : Z → Uk be a
global immersion (a differentiable injection whose Jacobian
is everywhere full rank) with left inverse fk : Vk → Z and
range Vk = gk(Pk) = M∩ Uk.

Proposition 1. Let (Uk)
K
k=1, (Vk)

K
k=1, (gk)

K
k=1, and

(fk)
K
k=1 be as above. Further, let k be a discrete random

variable taking values 1, . . . ,K and z a continuous random
variable taking values in Z . Then if x is a random variable
supported on M such that

p(x, z, k) = δ(x− gk(z))q(z)pk (9)

One has

(i) The joint distribution of x and k is given by:

p(x, k) = pk1Vk
(x)|det[Jfk(x)Jfk(x)T ]|

1
2 q(fk(x))

(10)

(ii) The marginals p(k) and p(z) are given by pk and q(z)
respectively.

(iii) The random variables z and k are independent.

(iv) The conditional distributions p(x|k) and p(k|x) are
given by:

p(x|k) = 1Vk
(x)|det[Jfk(x)Jfk(x)T ]|

1
2 q(fk(x))

(11)

p(k|x) = pk1Vk
(x)|det[Jfk(x)Jfk(x)T ]|

1
2 q(fk(x))∑

j:x∈Vj
pj |det[Jfj(x)Jfj(x)T ]|

1
2 q(fj(x))

(12)

(v) The density of interest, p(x) is given by

p(x) =
∑

k:x∈Vk

pk|det[Jfk(x)Jfk(x)T ]|
1
2 q(fk(x))

(13)
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Figure 2: Learning quantized centers on the low dimensional
data manifold using a vector quantized auto-encoder.

Proof. Deferred to the appendix (see Section 7).

Thus we assume the joint distribution of x, z, and k
to be p(x, z, k) = δ(x − gk(z))q(z)pk and apply the
above proposition. We will use either q = N(0, I) or
q = 1

vol(B1(0))
1B1(0) as our latent distribution and let pk be

the normalized probability with which x occurs in Uk, that
is:

pk :=
p(x ∈ Uk)∑K
j=1 p(x ∈ Uj)

=

∫
Uk

p(x)dx∑K
j=1

∫
Uj

p(x)dx
(14)

It remains to learn a “good” collection of charts U1, . . . , UK ,
estimate p1, . . . , pK , and then to parameterize g1, . . . , gK
via normalizing flows gθ1 , . . . , g

θ
K and obtain a maximum

likelihood estimate for θ by optimizing − log pθ(x) (where
pθ(x) is as in (13)).

4.2.1 Learning the collection of charts U1, . . . ,UK

We learn the charts U1, . . . , UK via a vector-quantized auto
encoder (VQ-AE)[39], as it provides an effective and scal-
able mechanism to learn quantized centers on lower dimen-
sional manifolds (also see [40] for a recent application on
high-dimensional data). The VQ-AE learns an encoder map
E : X → V , a decoder map D : V → X , and a collection of
“encoded chart centers” Q = {vk}Kk=1 ⊂ V that minimize
the reconstruction error L(D(argminv∈Q ||v−E(x)||2), x).
Once D, E, and Q are learned we compute dk(x) =
||E(x) − vk||2 for k = 1, . . .K. With d1(x), . . . dk(x) in
hand it remains to compute our charts. We would like the
charts to overlap, but we also want them to be sparse in the
sense that no individual x has too many relevant charts.
One possible choice is to fix m ∈ {1, . . . ,K} and let
d̃1 ≤ · · · ≤ d̃K be the sorted permutation of d1, . . . , dK
then define Uk = {x : ||E(x) − vk||2 ≤ d̃m(x)}, so that
every point x has at least m charts associated to it (those
whose encoded chart centers are among the m closest to
E(x)). With this choice, a point x will have exactly m
associated charts so long as the mth closest chart center
is unique. Another choice would be to fix ϵ > 0 and let

...
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Figure 3: Learning the data distribution using a family of
normalizing flows conditioned on the quantized centers.

Uk = {x : ||E(X)− vk||2 < (1 + ϵ)d̃m(x)} (increasing ϵ
enlarges each chart). For now we leave m and ϵ as hyper-
parameters, and in general denote m(x) = |{k : x ∈ Uk}|
(one always has m(x) ≥ m). Note that checking if x ∈ Uk

amounts to computing E(x) and d̃1(x), . . . , d̃K(x) and ver-
ifying that ||E(x)− vk||2 < (1 + ϵ)d̃m(x).

4.2.2 Estimating p1, . . . ,pK

Once U1, . . . , UK are fixed note that if rk := p(x ∈ Uk),

rk = Ex∼p(x)[1Uk
(x)] (15)

The density p(x) is unknown at this point, but we may
estimate rk using the empirical distribution ρ(x) =
1
N

∑N
n=1 δ(x − xn) so that rk ≈ Ex∼ρ(x)[1Uk

(x)]. Prac-
tically speaking we thus perform a second pass over the
training data and update r1, . . . , rK (initialized as zero) via
r
(n)
k = n−1

n r
(n−1)
k + 1

n1Uk
(xn), 1 ≤ n ≤ N , finally setting

rk = r
(N)
k and pk = rk/

∑K
j=1 rj .

4.2.3 Learning the local transformations g1, . . . ,gK

Once U1, . . . , UK and p1, . . . , pK are obtained we model
gk : Z → Uk as an L layered invertible conditional nor-
malizing flow. Where dimensionality change is required, we
post-compose it with a conformal dimension raising map
so that gk = ck ◦ gLk ◦ · · · ◦ g1k. We write the left inverse
of gk via fk = f1

k ◦ · · · ◦ fL
k ◦ c†k where f l

k = (glk)
−1 and

c†k denotes the left inverse of the conformal map c obtained
by removing the zero padding and inverting the various
Möbius transformations composing ck. In practice, we re-
duce the number of parameters of our model by restricting
each glk (and f l

k) to depend on k only through the value of
the encoded chart center vk. With this parametrization of
f1, . . . , fK in hand (11) becomes

p(x|k) = 1Vk
(x)q(fk(x))|λk(c

†
k(x))|

−1

L∏
l=1

|det[Jf l
k(f

l+1
k ◦ · · · ◦ fL

k (x))]|
(16)

where λk(u) is defined via (Jck(u))T (Jck(u)) = λk(u)
2I.



As we’ll see this approach allows for far higher expressive
power than global conformal flows without sacrificing the
ability to generate realistic samples, perform inference, or
compute exact densities. Indeed we may rewrite (13) via

p(x) =
∑

k:x∈Uk

p(x|k)p(k)

= Ek∼p̃x(k)[p(x|k)]
∑

j:x∈Uj

p(j)

︸ ︷︷ ︸
piecewise constant

(17)

Where p̃x(k) = p(k|p(x|k) > 0) = p(k)/
∑

j:x∈Uj
p(j).

Thus, during training of the conditional normalizing flow
we may replace the expectation Ek∼p̃(k)[p(x|k)] with the
stochastic quantity p(x|k), k ∼ p̃(k), performing only a
single gradient descent pass per data-point as opposed to
m(x) passes. If the exact likelihood is needed, however, it
can be computed at the cost of evaluating the normalizing
flow and its Jacobian m(x) times:

p(x) =
∑

k:x∈Uk

p(x|k)p(k)

=
∑

k:x∈Uk

pkq(fk(x))|λk(c
†
k(x))|

−1

L∏
l=1

|det[Jf l
k(f

l+1
k ◦ · · · ◦ fL

k (x))]|

(18)

Since z and k are independent, one can perform the sam-
pling task via first sampling z ∼ q(z) and k ∼ p(k) and
then computing a single forward pass of the normalizing
flow chosen by k to obtain x = gk(z).

The inference task is complicated slightly by the fact that
z is no longer wholly determined given x, but instead
takes values (fk(x))k:x∈Uk

with corresponding probabil-
ities (p(k|x))k:x∈Uk

. One could perform a stochastic infer-
ence via sampling k ∼ p(k|x) and computing z = fk(x)
(this amounts to choosing among the relevant charts for
x), however if deterministic inference is preferred then
of course one may always compute the expected value
of z as z = Ek∼p(k|x)[fk(x)] =

∑
k:x∈Uk

p(k|x)fk(x)
or the most probable value of z as z = fs(x) where
s = argmaxk:x∈Uk

p(k|x).

4.3 HARD-BOUNDARY OR DETERMINISTIC
APPROXIMATION

A particularly simple special case of the above model is
the case m = 1 and ϵ = 0, in which only a single
chart is associated to a given x. This case reduces our
atlas of overlapping charts to a disjoint partition of the
data manifold M. In this case Uk is exactly the subset of
X for whom E(x) is closest to the encoded chart center
vk, and thus with the exception of x lying on the chart

boundaries, the random variable k can be treated as a
deterministic function of the random variable x, namely
k(x) = argmink=1,...,K ||E(x)− vk||2 =

∑K
k=1 k1Uk

(x).
Sampling in the hard-boundary case is identical to sam-
pling in the soft-boundary case: generate samples for x by
first sampling z ∼ q(z) and k ∼ p(k) and then computing
x = gk(z). Inference in the hard-boundary case is unam-
biguous since

Ek∼p(k|x)[fk(x)] = fs(x)

s = argmax
k=1,...,K

p(k|x) = argmin
k=1,...,K

||E(x)− vk||2 (19)

That is to say that one performs inference by first identifying
which region Rs contains x and then computing z = fs(x).
The most significant simplification in the hard-boundary
case from a computational standpoint comes in computing
the likelihood p(x), since if x ∈ Uk then

p(x) = p(x, k) = p(x|k)p(k)

= p(k)q(fk(x))|λk(c
†
k(x))|

−1

L∏
l=1

|det[Jf l
k(f

l+1
k ◦ · · · ◦ fL

k (x))]|
(20)

Thus only one normalizing flow needs to be evaluated to
compute the exact likelihood p(x) (as opposed to m(x) of
them) and the normalizing flows may be trained using the
exact likelihood as opposed to an unbiased estimator for it.

5 EXPERIMENTS

To experimentally validate the efficacy of the proposed
framework, we consider six 3-dimensional data distribu-
tions over manifolds of varying complexity as shown in
Figure 4. Each dataset consists of 10, 000 datapoints, 5, 000
of which we use for training and 2, 500 each for valida-
tion and testing. We train three different normalizing flows -
RealNVP [13], Masked Autoregressive Flows (MAF) [18]
and Conformal Embedding Flows (CEF) [12] over these
datasets with and without the augmentation of our frame-
work. We refer to a base flow augmented with the vector
quantized conditioning as VQ-flow. We define each model
using 5 flow transformations and train them for 100 epochs
using an Adam optimizer, early stopping if the validation
performance does not improve over 10 epochs. For CEF, we
use a 2-dimensional RealNVP as the base flow, which is
then raised to the 3-dimensional space using the conformal
embedding. We parameterize the VQ-AE using feedforward
neural networks and use a latent dimension of 2 with k = 32,
to learn the partitioning of the data manifold. To define the
conditional normalizing flow, we use the parameterization
given in [41]. We evaluate the models for density estimation
and sample generation. We follow the same hyperparam-
eters for a base flow and its VQ-counterpart without any
tuning and report the performance averaged over 5 inde-
pendent trials. We defer further details on data generation,



Model Spherical Helix Lissajous Twisted-Eight Knotted Interlocked-Circles

Real NVP 3.15 ± 0.07 -3.37 ± 0.16 2.42 ± 0.07 0.94 ± 0.15 -2.17 ± 0.14 0.95 ± 0.13
VQ-RealNVP 3.55 ± 0.04 -1.66 ± 0.08 3.04 ± 0.15 2.29 ± 0.14 0.39 ± 0.18 2.42 ± 0.25

MAF 4.38 ± 0.10 -2.90 ± 0.02 2.50 ± 0.12 1.34 ± 0.22 -1.02 ± 0.14 1.07 ± 0.07
VQ-MAF 4.43 ± 0.14 -0.49 ± 0.03 3.48 ± 0.16 2.01 ± 0.10 0.62 ± 0.16 2.29 ± 0.18

CEF 0.91 ± 0.07 -3.71 ± 0.09 0.42 ± 0.15 -0.38 ± 0.21 -2.48 ± 0.26 -0.72 ± 0.11
VQ-CEF 0.98 ± 0.11 -2.90 ± 0.17 1.65 ± 0.14 -0.32 ± 0.19 -1.93 ± 0.17 1.24 ± 0.15

Table 1: Quantitative evaluation of Density Estimation in terms of the test log-likelihood in nats (higher the better) on the
3D datasets. The values are averaged across 5 independent trials, ± represents the 95% confidence interval.

Model Spherical Helix Lissajous Twisted-Eight Knotted Interlocked-Circles

Real NVP 0.50 ± 0.07 -57.46 ± 2.11 0.18 ± 0.14 -2.72 ± 0.90 -8.65 ± 0.87 -2.18 ± 0.37
VQ-RealNVP 0.99 ± 0.14 -3.85 ± 0.98 0.59 ± 0.08 0.18 ± 0.17 -1.44 ± 0.37 -0.11 ± 0.12

MAF 0.65 ± 0.26 -92.83 ± 5.69 0.12 ± 0.16 -2.77 ± 0.81 -7.04 ± 0.49 -2.49 ± 0.14
VQ-MAF 1.01 ± 0.07 -4.62 ± 0.37 0.59 ± 0.07 -0.32± 0.13 -2.44 ± 0.11 -0.15 ± 0.08

CEF -1.17 ± 0.06 -29.90 ± 2.12 0.38 ± 0.14 -4.03 ± 0.38 -19.40 ± 1.80 -3.42 ± 0.49
VQ-CEF 0.80 ± 3.42 -20.75 ± 2.22 0.49 ± 0.03 -3.51 ± 0.73 -14.44 ± 1.57 -3.23 ± 0.19

Table 2: Quantitative evaluation of Sample Generation in terms of the log-likelihood of generated samples in nats (higher
the better) on the 3D datasets. The values are averaged across 5 independent trials, ± represents the 95% confidence interval.

implementation as well as results on additional 3D data
distributions to the supplementary material.

5.1 DENSITY ESTIMATION

The ability to compute exact likelihood is one of the criti-
cal features of a normalizing flow that makes it a potential
tool in solving inverse problems. Improving the expressive
power of flows can thus enhance their utility as priors by
better modeling the data density. Thus, we first evaluate the
proposed framework’s ability to enhance the expressivity of
flows to perform better density estimation. Table 1 compares
the log-likelihood (in nats) achieved by different flow mod-
els with and without the VQ-augmentation on a held-out
test set. A higher value indicates a better learned density.
We observe that VQ-flows are able to achieve higher test
log-likelihoods than their non-VQ-counterparts consistently
across the considered data distributions. Thus, our frame-
work enables better density estimation for normalizing flows
over complex manifolds.

5.2 SAMPLE GENERATION

A key desiderata of an expressive generative model is its
ability to generate high fidelity samples from the data dis-
tribution. Figure 4 visualizes the samples generated by a
RealNVP flow trained on the 3D data distributions with and
without the VQ augmentation. We observe that while the
classical flow is able to generate samples from the data man-

ifold, it also generates data points off the manifold, resulting
in a poor fit to the real data distribution, as expected due
to the requirements of being a global diffeomorphism. VQ-
flows are seen to overcome these restrictions and generate
samples better approximating the real data distribution. For
a quantitative comparison, we evaluate the log-likelihood
of the generated samples using a kernel density estimator
fitted on the training data. We use a Gaussian kernel, with
an optimal bandwidth obtained through cross-validation
for each data distribution. We observe (Table 2) that VQ-
flows, owing to their ability to model the topology of the
data manifold better, significantly outperform their non-VQ
counterparts on sample generation.

5.3 HIGH DIMENSIONAL DATA

To study the scalability of the proposed approach to higher
dimensions, we consider the MNIST [42] dataset compris-
ing 60,000 grayscale images of handwritten digits, each of
dimension 784 (28×28). We train RealNVP and MAF with
and without the VQ-augmentation and plot FID scores of
the generated samples across their training iterations in Fig-
ure 5. We observe that VQ-flows are able to achieve better
performance (lower FID scores) faster than their non-VQ
counterparts, hence validating the utility of the proposed
approach in higher dimensions. An interesting observation
here is that while MAF results on MNIST are much better
than that of RealNVP, both VQ-MAF and VQ-RealNVP
converge to the similar (low) FID scores. This early result



(a) Spherical (b) Helix (c) Lissajous (d) Twisted-Eight (e) Knotted (f) InterlockedCircles

Figure 4: Qualitative visualization of the samples generated by a classical flow - RealNVP (Middle Row) and its VQ-
counterpart (Bottom Row) trained on Toy 3D data distributions (Top Row).

(a) RealNVP (b) MAF

Figure 5: FID scores (lower the better) across the training
of (a) RealNVP and (b) MAF on the MNIST dataset. The
shaded region represents the standard deviation over 3 trials.

seems to validate our hypothesis that the core difficulties
(topology, dimensionality, etc), even on real datasets, can
perhaps be better addressed by the proposed research direc-
tion than by improving backbone ‘single’ flow models.

5.4 ABLATION STUDY

Parameterizing the partitioning function using a VQ-AE
is a design choice and the no. of partitions k to consider
over the data manifold is an important hyperparameter un-
derlying the proposed framework. We conduct an ablation
study to evaluate the sensitivity of our approach on k and
the partitioning method. We consider k-means clustering

as an alternative design choice for the partitioning function.
We train a RealNVP flow over the HELIX data distribution
using k-means and VQ-AE, across increasing values of k.
We plot the validation log-likelihood post training for 25
epochs as a function of k in Figure 6. We observe that VQ-
AE results in better performance of the flow consistently
across k, over k-means. Further, the choice of k beyond a
threshold does not have any significant effect on the model,
hence it is sufficient to fix it to a large enough value.

6 FUTURE WORK & CONCLUSION

Our framework is particularly well suited to high dimen-
sional datasets (such as natural images) that obey the mani-
fold hypothesis, an avenue we hope to explore in the sequel.
One of the practical issues we encountered with our ap-
proach is that training gk only on samples from Uk does
not always restrict the learned p(x|k) to be supported only
on Uk. In such cases, the sum over k such that x ∈ Uk

in (18) yields an underestimate for p(x), and the total sum
k = 1, . . . ,K must be used instead during testing. In the fu-
ture, we hope to address this issue by explicitly discouraging
the generation of samples outside Uk.

To summarize, motivated by differential and conformal ge-
ometry, we have developed a novel probabilistic framework
for “local” flows. We have demonstrated experimentally
on toy data distributions with various topological features
that this framework outperforms global flows - both dimen-



(a) Sample Generation (b) Density Estimation (c) Upon further training

Figure 6: Ablation Study on the effect of the partitioning method and the number of partitions k on sample generation (a)
and density estimation (b). (c)-The learning trajectory of the flow for a fixed k(=32), in terms of validation log-likelihood.
The shaded region represents the standard deviation over 3 independent trials.

sion preserving (bijective flows) and dimension raising (em-
bedding flows). Our framework is agnostic to the type of
flow transformation employed and retains the key feature
of normalizing flows: exact density evaluation. As such,
we argue that using local flows as probabilistic chart maps
over the data manifold is a natural way to overcome limited
expressivity in the presence of dimension change or other
topological impediments.

7 APPENDIX

Proof of Proposition 1. Proving (i).

We can compute the joint distribution over x and k - p(x, k)
as given below:

p(x, k) =

∫
Z
p(x, z, k)dz = pk

∫
Z
δ(x− gk(z))q(z)dz

= pk1Vk
(x)×∫

Z
δ(z − fk(x))|det[Jgk(z)TJgk(z)]|−

1
2 q(z)dz

= pk1Vk
(x)|det[Jgk(fk(x))TJgk(fk(x))]|−

1
2 q(fk(x))

= pk1Vk
(x)|det[Jfk(x)Jfk(x)T ]|

1
2 q(fk(x)) (21)

Proving (ii). It is readily verified that p(z) = q(z) and
p(k) = pk, in particular:

p(z) =

K∑
k=1

∫
X
p(x, z, k)dx

=

K∑
k=1

pk

∫
X
δ(x− gk(z))q(z)dx

= q(z)

K∑
k=1

pk = q(z)

(22)

and,

p(k) =

∫
X

p(x, k)dx

= pk

∫
X

1Vk
(x)|det[Jfk(x)Jfk(x)T ]|

1
2 q(fk(x))dx

= pk

∫
Vk

|det[Jfk(x)Jfk(x)T ]|
1
2 q(fk(x))dx

= pk

∫
Z
q(z)dz = pk

(23)

Proviing (iii). Taken together, (22) and (23) yield that z and
k are independent random variables since,

p(z, k) =

∫
X
p(x, z, k)dx = pkq(z) = p(k)p(z) (24)

Proving (iv). Dividing (21) by p(k) = pk we get that the
distribution of x conditioned on a particular chart is given
by:

p(x|k) = 1Vk
(x)|det[Jfk(x)Jfk(x)T ]|

1
2 q(fk(x)) (25)

In particular, p(x|k) is zero unless x ∈ Uk. Meanwhile
p(k|x) is given by the Bayes’ formula as:

p(k|x) = p(x|k)p(k)∑K
j=1 p(x|j)p(j)

=
pk1Vk

(x)|det[Jfk(x)Jfk(x)]|
1
2 q(fk(x))∑

j:x∈Uj
pj |det[Jfj(x)Jfj(x)T ]|

1
2 q(fj(x))

(26)

Proving (v). Note that the distribution p(k|x) is thus also
zero unless x ∈ Uk, a fact that will be employed during
inference. Finally the density p(x) is given by:

p(x) =

M∑
k=1

p(x|k)p(k)

=
∑

k:x∈Uk

pk|det[Jfk(x)Jfk(x)T ]|
1
2 q(fk(x))

(27)
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