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(57) ABSTRACT

A signal processing technique can be effectively used for
source separation, signal enhancement, and noise reduction
when using a twin microphone system. The class of sto-
chastic signals for which ratio-estimates can be computed
from histograms 1s defined. This class fits real-world signals
of interest such as voice signals. Theoretical computation in
closed form of the optimal estimator for this class of signals
1s disclosed. Two practical implementation solutions are
disclosed, as 1s a practical solution to exploit an echoic
environment model. Furthermore, two novel techniques for
signal demixing are presented. The application of the opti-
mal estimator and the suboptimal estimator to the case of
more than two channels 1s disclosed.
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Figure i: The ST:T coeflicients histograms for two frequencies (w = 0 left and w = 157/32 right)
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Figure ¥ The optima. (dotted lina) and DUET (solid hine) histograms for a degenerate case (three sources)
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Figure 4 The real (lett) and 1maginary (right,} parts of the estimated ratics {the DUET estirmales are the
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Figure 5: Parametric plot of the ratio for on2-echo channel model
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OPTIMAL RATIO ESTIMATOR FOR
MULTISENSOR SYSTEMS

Reference 1s hereby made to Provisional Application No.
60/213,187 filed Jun. 21, 2000 1n the names of the present

mventors, entitled OPTIMAL RATIO-ESTIMATOR FOR
MULTI-SENSOR SYSTEMS AND ITS APPLICATIONS
TO BLIND SOURCE SEPARATION; this application 1is
also a division of application Ser. No. 09/886,872 filed on
Jun. 21, 2001, enftitled OPTIMAL RATIO-ESTIMATOR
FOR MULTI-SENSOR SYSTEMS now U.S. Pat. No.
6,577,966 and whereof the disclosure 1s hereby incorporated
herein by reference.

The present invention relates generally to an optimal
ratio estimator and, more particularly, to an optimal ratio
estimator for multi-sensor systems and to applications
thereof to blind source separation.

Mimaturized sensors and increased computational power
and memory storage 1n today’s digital signal processors
make 1t possible to implement and apply advanced DSP
techniques to problems of source separation and noise
reduction for small electronic devices such as, for example,
speech recognition front ends, personal digital assistants
with voice input, mobile phones, smart alarms, etc.). Such
devices can take advantage of two or more microphone
arrays, and are aimed at improving the directionality of the
signal 1nput system, or simply of source separation, while
not affecting the quality of the sound, particularly if the
sound of interest 1s speech. In recent years, this domain has
been the focus, at the low end of applications, for Blind
Source Separation (BSS) and Independent Component
Analysis (ICA) Techniques. See, for example, Christian
Jutten and Jeanny Herault. Blind separation of sources, part
I: An adaptive algorithm based on neuromimetic architec-
ture. Signal Processing, 24(1):1-10; 1991; Christian Jutten
Pierre Comon and Jeanny Herault. Blind separation of
sources, part 11: Problems statement. Signal Processing,
24(1):11-20, 1991; Ehud Weinstein, Meir Feder, and Alan
Oppenheim. Multi-channel signal separation by decorrela-
tion. IEEE Trans. On Speech and Audio Processing, 1(4):
405—413, 1993; and Pierre Comon. Independent component
analysis, a new concept? Signal Processing; 36(3):287 314,
1994,

Nevertheless, traditionally array processing and beam-
forming signal processing techniques were principally con-
cerned with the formation of steered beams for an array of
sensors 1n sonar and radar systems. See, for example, Hamid
Krim and Mats Viberg. Two decade of array signal process-
ing research. IEEE Signal Processing Magazine, 13(4),
1996; and V. Van Veen and Kevin M. Buckley. Beamform-
ing: A versatile approach to spatial filtering. IEEE ASSP
Magazine, 5(2), 1988.

It 1s herein recognized that the ratio of the short time
Fourier transform (STFT) coefficients of signals received at
two sensors can factor out the role of the power spectrum of
emitting sources, under an assumption called disjoint
orthogonality. Thus, 1t can reveal parameters specific to the
mixing scenario and serve as a basis for channel estimation
techniques.

A signal processing technique 1s disclosed that can be
cllectively used for source separation, signal enhancement,
and noise reduction when using a twin microphone system.
The class of stochastic signals for which ratio-estimates can
be computed from histograms 1s defined. This class fits
real-world signals of interest such as voice signals. Theo-
retical computation in closed form of the optimal estimator
for this class of signals 1s disclosed. Two practical imple-
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2

mentation solutions are disclosed as 1s a practical solution to
exploit an echoic environment model. Furthermore, two
novel techniques for signal demixing are presented. The
application of the optimal estimator and the suboptimal
estimator to the case of more than two channels 1s disclosed.

The 1nvention will be more fully understood from the
following detailed description of preferred embodiments, in
conjunction with the Drawing, in which

FIGS. 1—-5 show graphs helpful to gaining a fuller
understanding of the invention, where

FIG. 1 shows short term Fourier Transform (STFT)
coellicients histograms for two frequencies, w=0 on the left
and w=15m/32 on the right;

FIG. 2 shows optimal (dotted line) and DUET (solid line)
histograms for a degenerate case (3 sources;

FIG. 3 shows optimal (dotted line) and DUET (solid line)
histograms for 2 sources;

FIG. 4 shows the real (left) and imaginary (right) parts of
the estimated ratios, with the DUET estimates shown by the
dotted lines;

FIG. § shows a parametric plot of the ratio for a one-echo
channel model; and

FIGS. 6 and 7 show flow type schematic diagrams
helpful to an understanding of the mvention.

In accordance with an aspect of the invention, a source
separation method based on the use of STFT ratios of two
sensor inputs, called DUET (Degenerate Unmixing and
Estimation Technique), is hereby extended by the present
invention. For DUET, see A. Jourjine; S. Rickard; and O.
Yilmaz. Blind separation of disjoint orthogonal signals:
Demixing n sources from 2 mixtures. In Proceedings IEEFE
International Conference on Acoustics, Speech, and Signal
Processing. IEEE Press, 200. Jun. 5-9, 2000, Istanbul,
Turkey. The problem formulation 1n DUET 1s herein gen-
eralized and it 1s shown that considerably weaker assump-
tions about the classes of input signals are suflicient to apply
the derived techniques. The analysis centers on the notion of
a ratio-estimator and a novel stochastic model that enables
derivation of the maximum likelihood ratio-estimator.

It 1s herein recognized that derived technmiques can be
clfiectively applied to source separation, source localization,
signal enhancement, and noise reduction when using a twin
microphone system, both in echoic environments and degen-
erate situations. The ratio of the short time Fourier transform
(STFT) coefficients of signals received at two sensors can
factor out the role of the power spectrum of emitting
sources, under an assumption called disjoint orthogonality.
Thus, it can reveal parameters specific to the mixing sce-
nario and serve as a basis for channel estimation techniques.

The present analysis defines and analyzes novel signal
processing techniques based on STFET ratio statistics that can
be effectively applied to source separation, source
localization, signal enhancement, and noise reduction when
using a twin microphone system. An object of the mnvention
1s to find neccessary conditions for classes of signals for
which our source separation techniques do indeed work,
even 1n degenerate situations. Such an understanding per-
mits to specifying practical conditions when such techniques
work and define their limitations.

In accordance with an aspect of the invention, a source
separation method 1s based on a principle of interpreting
STFT ratios of two sensor mnputs, which has been proposed
in Jourjine et al. op. cit., under the name DUET (Degenerate
Unmixing and Estimation Technique).

Considering the problem formulation in DUET (see
Section 2), it will hereinafter be shown that weaker assump-
tions about the classes of input signals combined with an
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optimal statistical interpretation of the data are sufficient to
solve the same problem.

Rather than teach filters to demix data according to some
statistical criterion (see, for example, K. Torkkola. Blind
separation of convolved sources based on information maxi-
mization. In IEEE Workshop on Neural Networks for Signal
Processing, Kyoto, Japan, 1996), analysis of the present
invention centers on the idea of estimating ratios of two
transfer functions H,/H,. (see below), and using these
estimates to further infer a parameterized model and demix
sources. The mixing herein assumed 1s the following:

X, (O=h Fs O+ . . +h 50

(1)

X(0=h, %5, (O+ . . . Hhon s (1)

where s, . . . S,, are N sources of interest, x,, X, are the
sensor measurements and h,, . . . h,,, are the 2N channel
formal 1mpulse responses. By formal we mean that frac-
tional delays are allowed. See Tim Laakso, Vesa Valimakai,
Matti1 Karjalainen, and Unto Laine. Splitting the unit delay.
IEEE Signal Processing Magazine, pages 30 60; 1996.

Besides statistical independence of the sources, two other
basic assumptions are made:

Sources are stationary on a short-time horizon, but their
frequency content has jumps over long-time periods; and
For a given time window, signals may have frequency gaps,
but in the long term they cover all the frequency bands
(ergodicity or persistence hypothesis).

These qualitative properties will form the basis of a
mathematical model for a class of signals of interest.
Regarding the channel description, we do not make any
assumption at this time. However further into our analysis
we apply our technique to both anechoic and echoic mixing,
models. Although most of this paper 1s concerned with the
two microphone case, we also present extensions of the
techniques introduced to the multi-sensor case.

The next section reviews elements of interest about beam-
forming and degenerate demixing. Thereafter, the principles
of the statistical approach, a formalization of the estimation
problem, and 1ts consequences 1n accordance with the
present mvention will be reviewed. An experimental vali-
dation 1s also included.

A basic principle for singling out a source by beamform-
ing can be used 1n adaptive algorithms for demixing real-
world anechoic and echoic signals. See Justinian Rosca,

Joseph O Ruanaidh, Alexander Jourjine, and Scott Rickard.
Broadband direction-of-arrival estimation based on second

order statistics. In S. A. Solla; T. K. Leen; and K. R. Muller,
editors, Advances in Neural Information Processing Systems
12, pages 775 781. MIT Press 2000; and Jourjine et al., op.
Cit.

Of particular interest here 1s the technique for estimating
mixing model parameters Jourjine et al., op. cit., which was
applied for degenerate mixtures (more sources than two and
two microphones). These principles are reviewed below.

Beam-forming 1s the problem of processing signals
impinging on an array of sensors i1n order to maximize
reception from a given direction. The sonar and radar
applications of beamforming principles led directly to an
carly study of the topic and a rich literature. Hamid Krim et
al., op. cit. and V. Van Veen and Kevin M. Buckley.
Beamforming: A versatile approach to spatial filtering. IEEE
ASSP Magazine, 5(2), 1988. The array response or direction
vector can be easily determined for a finite speed of propa-
gation ¢ of a planar wave 1 a real environment and an
equidistant linear array of sensors, spaced by distance One
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4

source emitting from direction angle 0. 1s delayed at the next
adjacent sensor by

d
0; = —cosH;
C

Assuming the source 1s very far compared to d the e
induced 1n a K-array 1s:

X(0)=S(w)-[1e7=0 | e

(k—1)&] (2)

where X, S are the Discrete Fourier Transform of the
measurements and signal, respectively. The DFTs can be
replaced by short-time Fourier transforms, defined as fol-

lows. For a source signal s(t), t=. .., L-1, and a fixed
window w, t=0, . . . , M-1(M<L):

M+& .
27}
S(w, k) = Z e Myl —kb)s(), k=0,1,.... B=
=k

(3)

W

where b (the time step) is usually a fraction of M, the
window size. The ratio b/M represents the redundancy of
this representation. If w=1 and b=L=M, one recovers the
usual definition of the DFT (Discrete Fourier Transform). In:
Radu Balan, Justinian Rosca; Scott Rickard; and Joseph O
Ruanaidh. The influence of windowing on time delay esti-
mates. In Proceedings CISS 2000, Princeton, N.J., 2000.
Princeton, the present inventors analyzed the influence of
the window w on the formal manipulations of delays. In
essence, 1t was proved that the windowing effect 1s negli-
oible. As a result, the window w 1s fixed 1n accordance with
the present invention to a particular form (for instance the
Hanning window).

A linear combination of the measurements at the sensors
defines a spatial filter that improves the reception of a
narrow band source. Adaptive techniques can discover and
focus on one source at a time. This formulation of the
problem resulted 1n a successtul BSS approach to real-world
broadband (audio) signals using only two closely spaced
microphones. See Justinian Rosca, Joseph O Ruanaidh,

Alexander Jourjine, and Scott Rickard. Broadband
direction-of-arrival estimation based on second order statis-

tics. In S. A. Solla; T. K. Leen; and K. R. Muller, editors,
Advances tn Neural Information Processing Systems 12,
pages 775 781. MIT Press 2000.

Frequency domain approaches to the beamforming prob-
lem equally allow the recovery of a source of interest from
input mixtures. Although such approaches are considered to
be computationally intensive, the challenging part 1s the
simultaneous learning of demixing parameters at all fre-
quencies. There 1s a strong analogy between our approach
and frequency domain beamforming in the principle and
architecture for signal processing. However the way 1n
which parameters are learnt 1s radically different.

STFT ratios for two channel systems will next be con-
sidered.

A. Jourjine; S. Rickard; and O. Yilmaz. Blind separation
of disjomnt orthogoal signals: Demixing n sources from 2
mixtures. In Proceedings IEEE International Conference on
Acoustics, Speech, and Signal Processing. IEEE Press, 200.
Jun. 5-9; 2000, Istanbul, Turkey, imntroduced the DUET
technique for blind separation of an arbitrary number of
sources from two mixtures of the sources, and claimed that
it works under particular assumptions about the sources. In
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ogeneral, the BSS literature makes use of either the statistical
independence assumption or the statistical orthogonality
assumption. In contrast, DUET introduced an assumption
called disjoint orthogonality. By definition, N sources s,,

S,. . .,5x are disjointly orthogonal if:

(4)

where these are the DFT transforms of the signals. This
means that at most one source has a nonzero Fourier
component for any frequency m. In practice finite windows
of data are used, hence the analogous property for windowed
Fourier transforms and a fixed windowing function w(t$,
called w-disjoint orthogonality, 1s:

S;(w)S{w)=0,Vo, and Vi=J

S;(w,1):5(w,7)=0,Vw,T, and Vi =j (5)

Under the disjoint orthogonality assumption, it 1s follows
that at most one of the N sources, let it be s, for example,
will be non-zero for a given frequency m. In the anechoic
model, 1n the same way as 1n beam-forming theory for plane
waves 1mpinging on two Sensors, a source emitting from
direction angle O, will be delayed at the second sensor by

d

—cosb;
c

5 =

and will be possibly attenuated by factor a,. Theretore:
X, (w)=5(w)
X(w)=S{w)a,
e (6)

The i”* source’s parameters a, and §, $a_ {i}$ can be
obtained as follows from these relations:

(7)

X2 (w) 1 X (W)
a :\xf(i)L 0i = 5[“"(1“}(;(2))

X (w)
X2 (W)

1s an STFT ratio and the parameters derived from 1t are
herein referred to as ratio-estimates. In theory, DUET can
determine all ratio-estimates (parameters a; and 0, in this
case) by detecting N peaks of clusters in an amplitude-delay
histogram define by the equations above. Then 1t can obtain
estimates of the sources from one mixture only by selecting
the corresponding frequencies and transforming back to the
fime domain.

In practice, the frequencies corresponding to one cluster
(2. do not result exactly 1n the same 9d,. To account for noise
and estimation errors, DUET uses an averaging estimate:

. 1 1 X (@) (8)
% = mm; o)

Even so, DUET can demix surprisingly well a mixture of
five speech sources, but estimated sources have serious
artifacts. Artifacts increase as the number of sources
increases. The disjoint orthogonality assumption may be too
strong a condition, which 1s not satisfied in reality. For one
thing, disjoint orthogonality implies statistical orthogonality.
Many successiul BSS approaches rely, in the NxN case,
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simply on statistical orthogonality. See Lucas Parra, Clay
Spence, and Bert De Vries. Convolutive blind source sepa-

ration based on multiple decorrelation. In NNSP9S, 1988. A
question arises to whether the disjoint orthogonality assump-

tion really necessary? The assumption becomes unrealistic
especially when more than two sources are mixed together.

It 1s shown that the disjoint orthogonality assumption 1s
not necessary when applying ratio-estimates of the form
given in Equation (7). Mixing model parameters can be
estimated using statistical techniques under much broader
conditions, which are next defined.

A statistical approach will next be discussed. We gener-
alize ratio-estimates, formally 1ntroduce the class of signals
for which statistical properties of ratio-estimates are
relevant, and derive an optimal ratio-estimator. We claim
that ratio-estimates facilitate solutions to the types of BSS
applications mentioned.

In reference to a stochastic model for signals of interest,
let us consider again the convolutive mixing model. See
Equation (1). The transfer functions to the second micro-
phone can be included i1n the source definitions. After
redefinition:

X, (O=r ¥ O+ ..+ A0
Xo(D)=5,(D)+ . . . +53{E) (9)
In the frequency domain, the above equations become:
X (0,5)=R(0)S;(w,k)+ . .
(@)Sp{e, k)
XH(m.5)=S(0,k)+ ... +5y(0.k)

R

(10)

where S, . . . Sy, X, X, are the source and measurement
short-time Fourier transforms. Because windowing eflects
are negligible (see Radu Balan, Justinian Rosca; Scott
Rickard; and Joseph O Ruanaidh. The influence of window-
ing on time delay estimates. In Proceedings CISS 2000,
Princeton, N.J., 2000. Princeton), the unknown R coeffi-
cients are the same as in the case of the regular Fourier
transform, for all practical purposes. R plays the role of a
ratio of transfer functions. The problem here 1s to estimate
R.

Rather than simplify the expressions above using the
disjoint orthogonality assumption introduced 1n the previous
section, we 1nterpret them from a statistical perspective. In
general, sources can use simultaneously the same frequency
m,. However, many frequencies are available so that there
must be cases when sources do not use m, over a short
period of time. A statistical analysis of the STFT ratio

X (W)
X (W)

should separate the situation when one and only one source
uses a particular frequency from the case when none or all
use R,.(w,), for some 1. The former case enables reliable
estimate of the parameters to be made of the source propa-
gation model from data, and therefore ultimately of separate
sources. Indeed for those cases when only one source emits
at mg,

X (w)
X (W)

reduces to one of R, {w,) for some 1. At this point a model
of source propagation can be used, and 1ts parameters can be
estimated or the statistical properties of the ratio can be
directly used.
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The question arises: 1s 1t possible at all to estimate R
values reliably given that noise 1s present and the disjoint
orthogonality assumption does not necessarily hold?

At this point, the qualitative statistical assumptions made
above are recalled. Sources should be independent, station-
ary over short-time periods but with discontinuous spectral
content over long-time intervals, and be ergodic (or
persistent). Now, these hypotheses can be made more pre-
cise. A stochastic model that satisfies all these requirements
and naturally relaxes the strong w-disjoint orthogonality
assumption used in the DUET algorithm 1s constructed.

Short-term stationarity 1s recast into an assumption of
independence of the short-time frequency components.
Thus, for every fixed k, S(w,, k) is independent of S(w,, k)
for m,=wm,. Note that this would be formally true if samples
were jointly Gaussian.

Next, we model the discontinuous behavior of the spectral
power as a product of two random variables: a continuous
(or quasi-continuous, i.e. a discretized continuous) random
variable, denoted by G, and a Bernoulli random variable V
with probability p of being 1 and (1-p) of being 0. This is
a crucial assumption of the model in accordance with the
principles of the invention. Experimental data will be here-
inafter presented 1n support the stochastic model 1n accor-
dance with the present nvention. The intuition behind 1t
comes from the time-frequency representation of the speech.
In the time-frequency (TF) plane, speech forms various
ridge patterns. Consider that for a fixed frequency, one sees
a nonzero spectral power on that frequency channel for a
ogrven time-frame. The energy pulse may go on into the next
time frame, branch 1nto adjacent frequency bands, or stmply
disappear. Such a behavior suggests modeling the TF com-
ponents S(w,k) as a product of two random variables (RV):

(11)

where V 15 a Bernoulli RV or switching process and G 1s a
continous RV. For the present description, it 1s herein
considered that the spectral components are independent for
different time frame 1ndices. Thus, 1n fact, 1t 1s assumed that
S(w,, k,) 1s independent of S(w., k,) for every (w,, k,=w.,
k,). For speech signals this hypothesis can be relaxed to
accommodate, for mnstance, a hidden Markov model. Finally
the ergodicity (or persistence) hypothesis allows us to
assume that for every frequency m, V(w) i1s of non-vanishing
variance. This assumption 1s by no means essential to the
algorithms in accordance with the invention, and in fact 1n
several applications the frequency is tuned set on a particular
signal of interest. However this hypothesis 1s made to avoid
degenerate cases. The stochastic model 1n accordance with
the 1nvention 1s summarized below:

Signal Class: The class of signals of interest 1s formed by
those stochastic signals whose short-time Fourler transform
1s factorized as a product of a discrete Bernoulli RV and a
continuous (or quasi-continuous) RV as in Equation 11.

In defining an Optimal ML Ratio-Estimator, a principal
goal 1s to define an optimal estimator for R using the

stochastic model introduced betore. Consider the two-source
case for which the mixing model (10) turns into:

S(w,k)=V"5G*

()V, 4G,

Xo(0,k)=V, G “*+V, G,k (12)

For the remainder of the present subsection a frequency
1s fixed and we 1t writing 1t. For this model the following
assumptions are made:

(1) V,,V, are Bernoulli random variables with probabili-

ties of success pl, p2 respectively;
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(2) G,,G, are discrete random variables, uniformly dis-
tributed over a sufficiently large set of equispaced
points (say K, K,);

(3) V.5, V.5,G,5,G.%, are i.i.d. copies of the random vari-
ables V. and G,.

A problem 1s to estimate R, and R, based on B block data
measurements X,(1) . . ., X,(B) and X,(1) . . ., X,—(B).

We compute the maximum likelihood estimator for R, R,
by conditioning with respect to V%, V_* V_. At every block

k:

Pr(X,(k), Xo(k) | Ry, R2) = (12a)
> PrXi(k). Xa(k) | Ry, R, Vi = a, VE = B)Pry, (@)Pry, (b)
a,be{0,1}
Thus for the likelithood we obtain:
Pr(Xi, X2 | Ry, Rp) = (12b)

ac

[(1 = p)(l = p2)- Pr(Xi(k) =0, Xo(k) =0) +

P
Il

1

pi(1 = pa)- Pr(X (k) = R G, Xo(k) = G | Ry) +

(1 = p)p2-PrXi(k) = RaGS, Xo(k) = G% | Rp) +

p1p2 - PrX (k) = RiGi + Ry G5, Xa(k) = G} + G5 | Ry, Ry)]

where X, X, are B-vectors of complex numbers. Note that
the middle term probabilities can be written as:

PrX,(k)=R,G,
X,(k)=G R, )=
o(X,(k)=R X,
(k)-Pg,

X>(0))

Pr(X, (k)=R,G,", X,

(12¢)

(k)=sz |R2) =0 (X 1
(k) =RX,(k)) Pg,
(X5 (k)

where O () is the Kronecker symbol. Note that X, X, can
take values only on a discrete lattice. The lattice structure
has the following consequences:

Lemma 1.

For nonzero R,=R,, the following implications hold true
for the events (a),(b), and (c) defined below:

(12d)

(@) X,(k)=0 & X,
(k)=0=>X 1(k)=R1Xz

(k) & Xy (k)=R2X z(k)
(b) X, (k)=0 or X,(k)=0)

& X, (k=R X,
(k)=X 1 (k)=R-X,(k)

(c) X, (k)=0 or X,(k)=0)

& X1 (k)=RX,
(F)=X,(k)=R. X,

(%) (12e)
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[LLemma 2.

Events (a),(b), and (¢) are mutually exclusive.
[LLemma 3.

The set {1 ..., B} can be disjointly partitioned into four
sets T, T,, T5, T, as determined by events (a),(b), and (c).

T1={ie{1, . . ., B}(a) is true}
T2={ie{1, . .., B}|(b) is true}
T3={ie{1, . .., B}(c) is true}
T4={ie{1, . . ., B}|(a) and (b) and (c) are false} (12f)

Now, we can prove our main result:
Theorem. For uniformly distributed G, the likelihood
Pr(X,, X,|R,, R,) has the form:

Pr(Xy, X2|R, R2) = (12¢)
pirll—p2)  p2(l=p1)  pip2 ]'T“
1 - pi)(l - |
[( p1)(l —p2)+ X + %, + e
[m(l —p2) P1P2]|T2|_[P2(1 -pU Plpz]'T3'_
Kl KIKZ KQ K1K2

[ P1p2 ]|T4| B [ P1P2

B
— . i1, T2 T3]
e K, Kz] 11+ E|] 11 + E>] |1 + E5]

where [T,| denotes the cardinality of the set T;.
Proof. In the expression of Pr(X,;X,|R;, R,) the product

]

k=1

1s split into four sub-products according to which one of the
four sets T (Corrollary 2) 1 belongs.

Note that E;, E, E; and |T,| do not depend on R,, R,, but
rather on the prior information. Also p,,, p-, K,,, K, depend
on the actual measurements while |T,[,|T5| are the only
quantities that depend on R,, R,. Thus, maximizing the
likelihood turns into maximizing simultaneously [T,| and
IT;|, or equivalently, maximizing the number of times events
(b) and (c) are true. Therefore, the components of the
optimal R-estimator, R,, R, are the solutions of:

Ry, Ry)=argmax|iX,-RX,|® (13)

where the 0-norm means the number of “hits” (1.e. number
of cases when X,—-RX,=0). For more than two sources, the
additional R’s satisfy the same relation, with argmax inter-
preted as selecting local maxima. The number of local
maxima correspond to the number of sources present.

Implementation of the optimal R-estimator 1s discussed
next.

R-estimates can be obtained by finding the complex R
values for every o and chaining the values together across
all frequencies into R, (w), R,(w), . . . , R (w), after appro-
priate permutations. Below we discuss how: (1) R’s are
obtained for a particular frequency w; (2) n is determined
from the data at various frequencies; and (3) R-estimates are
assembled together.

First we address the estimation of R’s. Equation 13 can be
directly implemented using a histogramming method, as
ogrven by the following formula:

NopR0)=[{k X, (0,6)-RX,(0,k)|<d]| (14)
The optimal estimator 1s obtained as:

ﬁﬂpr(m)=ﬂrgmﬂxRNﬂpr (RJ (ﬂ)
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where argmax has the same local maxima interpretation as
before.

An approximation of Equation 14 (and therefore subop-
timal formula) is obtained further by making explicit the
ratio

X, (w, k)
Xy (0, k)

; RIREACYS (15)
N’(R, ) = |{k ok «::6}|

and the R-estimate 1s constructed similarly to the optimal
case, as:

R'(w)=argmaxN'(R,m)

Note the suboptimal equation above 1s asymptotically
optimal when 6—0. Parameter 0 corresponds to the bin size
used 1n the computation of histograms

(15a)

X1 (w, k)
Xz (w, k)

for every w. The determination of local optima naturally

corresponds to the highest peaks 1n the histograms.
Secondly, we return to the question of assessing the

number of sources n. The solution 1 accordance with the

present invention is to select histograms (and, therefore,
frequencies) with high confidence peaks. Confidence
depends on the height and mass of the peak areas. A
reference frequency w, . 1s finally obtained, defined as
follows: (1) It belongs to a range given by prior knowledge
about the type of signals, for instance, 500 Hz to 4 kHz 1n
the case of voice signals; and (2) The minimum distance
between acceptable peaks found 1s the largest among all
frequencies considered. The number of peaks for w, , gives
n.

Thirdly, we discuss the way histogram peaks (i.e.
R-values) are associated together across all frequencies. For
every frequency w, we consider n histogram peaks and label
them R, , Ho)={R(w), ..., R (w)}. The question is
to find a permutation 7t of the set 1,2, . . ., n such that sources

for R (w) are in the same order asm R, , =~ (w,. ). The
optimum permutation () is given by:
% X1{w, k) (16)
Topt(w) = argmaxnjzzl {k,, ool —r(j)Nen| < O and
X1 (Wrer » k)
XZ ({Ui’ffa k) - Rj(wrff) ) C‘5}|

Real signals, particularly voice signals can be approxi-
mately modeled using our model. Although the discreteness
assumption regarding the sources 1s not valid, for real speech
signals the two estimators defined above gave similar
results. In conclusion, the suboptimal histogram based esti-
mator 1s a good estimator for real speech signals, even 1n the
degenerate case of three sources.

Next, the modelling of echoic environments in the context
of the present invention 1s discussed.

Imposing a signal mixing model (such as far field and
echoic) helps the estimation problem. It is herein shown how
this 1s done when modeling the environment as an echoic
environment of order one (i.e. using only the first indirect
path).

Assuming that only one source 1s present, and the distance
d between sensors 1s very small (e.g. microphones are close).
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Microphone proximity implies that the delays we deal with
are fractional. The direct path delays are less than one
sample. In the far-field approximation, the transfer functions
will have the following form:

+ ... 4a,e ™)

fl

ale—f(r1+61)u_m

+ ... +a, e (Tton)e) (17)
where [t,],|0,] ... |0, |<1,a,...,a <1 are the echo attenuations
and T, . .., T, are the echo arrival times.

For n=1 we have an echoic approximation of order one.
The model has five parameters 1n this case: K, T, t4,,0,, and
a,. Estimation of parameters enables us to demix signals by
complex matrix mnversion and computation with fractional
delays 1n the two by two problem. It turns out that param-
eters can be estimated reliably by idenfification based on
SDFT ratios as discussed.

The main steps of the procedure are:

Compute SDFT ratios R(w,k);

Estimate R(w,k) for each histogram peak;

Determine permutation for assembling R-estimates
together;

Identily parameters of the environment model for R’s
above;

Recompute R$-estimates based on the model; and

Recover independent signals by signal demixing (see next
subsection).

Anechoic estimates can be obtained as a particular case of
the echoic results, when the echoic model 1s simplified with
a,=0.FIR models for H,1 and H,1 can also be used.

Next, signal demixing 1s considered.

In the case of two sources, source estimates are obtained
using the adjunct of the inverse of the estimated mixing
matrix.

The direct method for signal estimation based on
R-estimates 1n the general case of n sources comprises:

Partitioning of the complex plane by a Voronoi tesselation
on the set of pomnts R, ,

Spectral weighting of mixtures in the frequency domain,
with the characteristic function of each Voronoi1 set item
Inversion of STFT signals obtained by spectral weighting.

A generalization of the algebraic approach 1n the degen-
erate case of more sources than sensors 1s Wiener {iltering,
as described below. It requires additional information about
the variances of the sources, or a separate estimation process
with this goal.

Let us consider the case n=3. Assuming that the variances
v, 1=1,2,3, are determined, then an estimate of source 1 1s:

S.:: H1' 1"‘16!2sz (173)
where:
Hi = (v +vo + v3)(R1vi61; + Ryvadp; + R3v383;) — (18)
(Rivi + Rovy + R3v3)(v 015 + vada + v303;)
Ho = —(Riv| + Ryva + R3v3)(R v 81; + Ryvplay; + R3v3683;) +

(RiR vy + RyRyvy + R3R3v3) (v 05 + vo 09 + v303;)

and 0, 1s the Kronecker symbol.
The following section treats the generalization of the
estimation approach for more microphones.
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The analysis of the case of more sources and two micro-
phones 1s similar. The ratio histograms will exhibit more
local maxima, one peak for each source. Thus the
R-estimation problems reduces to finding the peaks of a
histogram. The problem becomes more challenging 1f more
sensors are used. Under the deterministic w-disjoint
orthogonality no acceptable answer has been found. A

solution there would be to pair the microphones and then to
somehow average the estimates. Using the stochastic model
in accordance with the present invention, a similar compu-
tation can be done for the likelihood function. For the
three-sensors case, the mixing model 1s:

X,*=R, V"G, "+R,, V"G,
+R, V565

X =Ry VG *+R,,V, G
+R,3 V3G 5"

X =V *G "4V, G+ VG~ (19)

Assuming the Bernoulli RVs V_1,V_2V_ 3 have

respective probabilities p,, p,, ps—1 $ close to one, we
obtain:

P(X,, X,, X,|R)=const-(1+E )"
(A+E )T (1+E )17 (20)

where

X (Rye — Rop) X3(Rip — Ric) (21)

RipRoc — RicRop RypRoc — R1:Rop

k
,X?r

4

ith (a,b,c) a circular permutation of (1,2,3). Defining

Al Roc — Rop » K —KRic
“  RipRyc— RicR2p “  RupRy — Ri1:Rop

and noticing that {R,_, R, _, a=1,2,3} is bijectively mapped
onto {A *, A % a=1,2,3} except for some singularities, it
follows that we can first estimate A’s parameters and then
recover R’s. Thus, the optimal estimator 1s given by the first

three optimizers of:

~l A2

22
(Aa, Aa) = argmax,1 ,2[ik, | X5 — ALXE — A2ZXE| < O] (22)

If each A 1s discretized 1nto k bins, the total computation-
alt cost would be 5BKk”. Alternatively, inspired by the ratio
estimator 1n the two-sensor case, a suboptimal estimator can
be derived as follows: the sets T,, T,, T; above are the sets
when only one source 1s zero on the particular frequency m.
The probability of this happening is about p*(1-p), much
bigger than p(1-p)°, the probability of two sources to be
zero. Thus the ratios histogram would have smaller peaks
and these peaks would be more difficult to detect. Instead, let
us consider the histograms of

Xl—zl X?}
X2_-, X3

—7

for several values of z, z,. In general these histograms
would exhibit a number of peaks of small amplitude, unless
z, and z, are exactly R, _, R, for some a. In this case, the
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contribution of source a 1s canceled and the ratios histogram
would exhibit two big peaks (of amplitude of order p(1-p).
These peaks should be respectively at

Rip — Kig
an
Rop — K2g

Rlc - Rla
RZc - RZG

with (a, b, ¢) a permutation of (1,2,3). This estimator
requires the same 5BK” operations, as the optimal estimator.

A number of tests to show that the model captures real
data well.

First, the stochastic model 1n accordance with the 1nven-
tion was checked. See Equation (11) For this about 18.6
seconds of voice (with natural pauses) was utilized at a
sampling frequency of F=8000 Hz and the STFT coelflicients
were computed over windows of length $M=64%. FIG. 1
shows a plot of the histograms of their real parts when the
number of bins 1s 100. Note the peaks around zero. This 1s
consistent with the superposition formula Pr=(1-p)P,+
p*d( ) which would represent the p.d.f. of a product VG
between a Bernoulli and a continuous random variable. Next
we plot the histograms (see Equation (14)) of the ratio X,/X,
for two and three sources of type (see Equation (11)) where
V’s are Bernoulli (p) and G’s are uniformly distributed on
-2, 2]. For R,=-0.5, R,=0.5, R;=-0.1 and p=0.85, we
obtained the histograms shown 1 FIG. 2. Even though p 1s
close to 1, the peaks can be very well estimated (the smaller
the probability p, the higher the peaks). FIG. 3 shows the
histogram obtained 1n the non-degenerate case of two
sources, from 100000 samples, R,=-0.5, R,=0.5 and
p=0.98. G was normally distributed N(0O, 1).

Finally we examine an echoic environment with one echo
(as in Equation (17)) for two three second TIMIT voices.

A source’s true complex ratio 1s drawn with solid line 1n
FIG. 4. Using the ratio histogram estimator we obtained the
estimates drawn with dotted lines 1n the same figure. For
cach frequency we estimated the two peaks in the histogram,
and then we decided how to assign the values based on a
continuity property. With the exception of a few frequencies,
the estimates are close to the i1deal curves. The ratio-
estimates obtained from these peaks (i.e. the estimated
mixing model parameters) were very close to the true values.
FIG. 5 presents a parametric plot of the ratio of transfer
functions for a one-echo channel model corresponding to the
solid line 1n FIG. 4. The parameters of the model in this case
were K=1, n=1, a,=0.3, t,=21, t=0.1 and 6,=0.2.

FIGS. 6 and 7 show schematic process or flow block
diagrams representing an i1mplementation of the demixing
scheme 1n accordance with the principles of the invention.

Basic steps are:

1. Read data and transform into frequency domain x,(t)—
X1(0),x,()—=>X,(w);
2. Compute the instantaneous ratios

Xz (w)
X1 (w)’

3. Compute the weights for each frequency and each
source: Hy(w) or H,,, H,k;
4. Filter the data: S,=H, X, (first, or direct method), or S,=

H, X +H,, X, (Wiener filter—equation (18));
5. Return in time-domain: S,(m)—$,(1).
FIG. 6 shows only the first method of unmixing, that 1s,
using a single channel. In order to compute the weights, we
need the location of the peaks corresponding to each source,
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at each frequency. This 1s achieved 1n two di
that parallel steps 2 and 3:

Terent blocks,

2a: Create/Update Histograms; and

3a: Find/Update Peaks and Permutations
See F1G. 7.

The ratio, that 1s, the peak location and correct
assignment, estimation procedure represents one aspect of
the present invention. It 1s noted that both the peak location
and the permutation problems have long been a problem 1n
the art. The foregoing steps enumrated above can be done
cither off-line, or on-line. In an exemplary off-line
implementation, at each frequency the histogram 1s created
based on the entire batch of data, then the peaks are searched
and found, and next the right indexing source-peak 1s done
(i.e. the permutation problem is solved). In an exemplary
on-line i1mplementation, the histograms and peaks are
updated adaptively with every block of data and, if needed,
the permutations are changed.

A second novel aspect herein disclosed 1s the demixing
technique based on the Voronoi regions of the complex
plane, at each frequency. The present description also pro-
vides a justification of the mixing model as disclosed 1n
Justinian Rosca, Joseph O Ruanaidh, Alexander Jourjne,
and Scott Rickard. Broadband direction-of-arrival estima-
tion based on second order statistics. In S. A. Solla; T. K.

Leen; and K. R. Muller, editors, Advances in Neural Infor-
mation Processing Systems 12, pages 775 781. MIT Press
2000; and 1n K. Torkkola. Blind separation of convolved
sources based on 1information maximization. In IEEE Work-
shop on Neural Networks for Signal Processing, Kyoto,
Japan, 1996.

The ratio estimator 1 accordance with the invention
herein disclosed 1s optimal in the sense of maximum like-
lthood under the stochastic assumtions we made; even 1if the
true statistics are different, the estimators still give good
results.

The foregoing description has disclosed, inter alia, the
following;

defined the class of stochastic signals for which ratio-
estimates can be computed from histograms; shown
that this class fits real-world signals of 1nterest such as
voice signals; the computation in closed form the
optimal estimator for this class of signals; extended the
optimal estimator and the DUET suboptimal estimator
to the case of more than two channels; and defined
identification resolution bounds, and bounds on the
number of sources 1n order to be able to separate
sources using ratio-estimate techniques.

While the invention has also been described by way of
exemplary embodiments, 1t will be understood that various
changes and modifications may be made thereto without
departing from the spirit and scope of the mvention which 1s
defined by the claims following.

What 1s claimed 1s:

1. Apparatus for ratio estimation comprising:

first and second microphone transducers for providing
respective signal data from first and second mobile
phone microphone transducers;

means for transforming said respective signal data into
respective frequency domain representations;

means for computing instantaneous ratios between said
respective frequency domain representations;

means for creating respective histograms of said instan-
taneous ratios;

means for finding and updating peaks and permutations in
said respective histograms;
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means for computing weight data for individual frequency
components of said respective frequency domain rep-
resentations by utilizing said peaks and permutations in
said respective histograms;

means for optionally filtering said weight data to derive
optionally filtered weight data;

means for transforming said optionally filtered weight
data into a time-domain representation; and

means for outputting said time-domain representation.
2. Apparatus for ratio estimation comprising:

first and second microphone transducers for providing
respective signal data from said first and second micro-
phone transducers;

means for transforming said respective signal data into
respective frequency domain representations;

means for computing instantaneous ratios between said
respective frequency domain representations;

means for creating respective histograms of said instan-
taneous ratios;

means for finding and updating peaks and permutations in
said respective histograms;

means for computing weight data for individual frequency
components of said respective frequency domain rep-
resentations by utilizing said peaks and permutations in
said respective histograms;

means for optionally filtering said weight data to derive
optionally filtered weight data;

means for transforming said optionally filtered weight
data into a time-domain representation; and

means for outputting said time-domain representation to a
respective mobile phone transducer.
3. A method of modeling echoic environments, compris-

Ing:

computing SDFT ratios R(w,k);

estimating R(w,k) for each histogram peak;

determining permutation for assembling R-estimates
together;

identify parameters of the environment model for R(w,k);

recomputing R-estimates based on the parameters; and

recovering ndependent signals by signal demixing.
4. The method of claim 3, wherein determining permu-

tation for assembling R-estimates together 1s given by

™

< & and

f

X (T, k)
X, (@, k) — B W)

Hﬂprzmgmxﬁz :4 Xl(’mrefak)_ﬁ-(’m' )| <0 |
Xo(@pep, k)

El

.,

5. The method of claim 3, wherein recovering indepen-

dent signals by signal demixing comprises:

partitioning of a complex plan by a Voronoi tessellation
on the set of points R, , '
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spectral weighting of mixtures 1n the frequency domain,
with the characteristic function of each Voronoi set; and

inverting of STFT signals obtained by spectral weighting.
6. A method of ratio estimation comprising the steps of:

deriving respective signal data from two sources;

transforming said respective signal data into respective
frequency domain x,(t)—=X,(0),x,(t)—=X,(m);

computing the instantaneous ratios

X ()
Xy ()

between said respective frequency domain representations;

computing the weights for individual frequency compo-
nents of said respective frequency domain representa-

tions: ﬁk(m) or H,,, H,,;
optionally filtering said weight data to derive optionally
filtered weight data;

transtforming said optionally filtered weight data into a
time-domain representation: S,(w)—§,(t); and

outputting said time-domain representation.
7. The method of claim 6, wherein optionally filtering said
welght data comprises filtering data using the direct method:

S.=H X,.
8. The method of claim 6, wherein optionally filtering said
welght data comprises filtering data using the Wiener filter-

ing method:
Sp=H, X, +H,,X,

where

—
L

Hp=(v+Vot+v3)(Ry v, 04,
(}_31W’1+}_32V2+E3V3)

(V101 44V505,+V3d3,)

and

H == (R V1 +RV+R; V)
(Ryv10 4 +RV,0, R V05, )+

(R 1E1“’1+R2E2”2+R3E3”3)

(V101 +V2 05, +V305,).
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