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SYSTEM AND METHOD FOR NON-SQUARE
BLIND SOURCE SEPARATION UNDER
COHERENT NOISE BY BEAMFORMING AND
TIME-FREQUENCY MASKING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/434,371, filed Dec. 18, 2002.

BACKGROUND OF THE INVENTION

1. Technical Field

The present mvention relates to blind source separation
(BSS) and more particularly, to non-square BSS under coher-
ent noise.

2. Discussion of the Related Art

Over the past several years, a variety of BSS techniques
have been introduced to separate independent audio signal
sources from an array of sensors. The BSS techniques that
have been developed sometimes focus onreal audio and noisy
data. Most techniques, however, focus on the “square™ case of
source separation (1.e., when there 1s an equal number of
sources and sensors), while some focus on the “non-square”
or degenerate case of source separation (i.e., when there 1s an
un-equal number of sources and sensors). With regard to the
“non-square” case, claims of generalization have been made;
however, these claims have not clearly indicated how they
would scale, neither from an algorithmic perspective nor in
terms of computational properties.

Certain BSS techniques have used a maximum likelihood
(ML) estimator to estimate the mixing parameters of the
signal sources. For example, one known technique denived
the ML estimator of the mixing parameters in the presence of
(Gaussian sensor noise. In this techmique, however, the noise
clement represented a technicality 1n that 1t was considered 1n
the limit zero in order to be able to determine parameter
update equations. In another known technique, the ML esti-
mators were dertved from noisy data that did not come from
an 1sotropic noise field.

SUMMARY OF THE INVENTION

The present mnvention overcomes the foregoing and other
problems encountered 1n the known teachings by providing a
system and method for non-square blind source separation
(BSS) under coherent noise.

In one embodiment of the present invention, a method for
non-square BSS under coherent noise comprises the steps of
estimating mixing parameters of a mixed source signal, first
filtering the estimated mixing parameters so that output noise
1s reduced, and second filtering the estimated mixing param-
cters so that the mixed source signal 1s separated from the
output noise.

In another embodiment of the present invention, a system
for non-square BSS under coherent noise comprises an esti-
mating means for estimating mixing parameters ol a mixed
source signal, a first filter for filtering the estimated mixing
parameters so that output noise 1s reduced, and a second filter
for filtering the estimated mixing parameters so that the
mixed source signal 1s separated from the output noise.

In yet another embodiment of the present invention, a
computer program product comprising a computer useable
medium having computer program logic recorded thereon for
non-square BSS under coherent noise, the computer program
logic comprises program code for estimating mixing param-
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2

eters of a mixed source signal, program code for first filtering
the estimated mixing parameters so that output noise 1s
reduced, and program code for second filtering the estimated
mixing parameters so that the mixed source signal 1s sepa-
rated from the output noise.

In another embodiment of the present invention, a system
for non-square BSS under coherent noise comprises a means
for estimating mixing parameters of a mixed source signal, a
first means for filtering the estimated mixing parameters to
reduce output noise, and a second means for filtering the
estimated mixing parameters to separate the mixed source
signal from the noise.

In yet another embodiment of the present invention, a
method for non-square BSS under coherent noise comprises
the steps of mitializing mixing parameters with random val-
ues, setting a source signal and alignment value to zero,
choosing a stopping threshold, computing an optimal parti-
tion and selection map, computing the mixing parameters,
computing an alignment criterion, first filtering the mixing
parameters so that output noise 1s reduced, second filtering
the mixing parameters so that a mixed source signal 1s sepa-
rated from the output noise, converting filtered data from a
time-irequency domain to a time-domain, and outputting the
converted data.

The foregoing advantages and features are of representa-
tive embodiments and are presented to assist in understanding
the invention. It should be understood that they are not
intended to be considered limitations on the invention as
defined by the claims, or limitations on equivalents to the
claims. Therefore, this summary of features and advantages
should not be considered dispositive 1n determining equiva-
lents. Additional features and advantages of the invention will
become apparent 1n the following description, from the draw-
ings and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 15 a block diagram of a computer system to which
the present ivention 1s applied according to an exemplary
embodiment thereof;

FIG. 2 1s a flowchart illustrating an maximum likelithood
(ML) algorithm according to an exemplary embodiment of
the present invention;

FIG. 3 1s a chart 1llustrating the signal-to-interterence-ratio
(SIR) gains for 2-8 microphones on four data types according,
to an exemplary embodiment of the present invention;

FIG. 4 1s a chart 1llustrating the segmental signal-to-noise-
ratios (SNRs) for 2-8 microphones on four data types accord-
ing to an exemplary embodiment of the present invention; and

FIG. § 1s a chart i1llustrating an example of 6-channel algo-
rithmic behavior according to an exemplary embodiment of
the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 1 1s a block diagram of a computer system 100 to
which the present mnvention 1s applied according to an exem-
plary embodiment thereof. As shown in FIG. 1, the computer
system 100 includes, inter alia, a central processing unit
(CPU) 110, a memory 120, an mput 130 and an output 140
operatively connected to each other via an input/output inter-
face 150.

The memory 120 can include random access memory
(RAM), read only memory (ROM), disk drive, tape drive,
etc., or a combination thereof. The ROM functions as a pro-
gram memory for storing a program executed in the CPU 110.
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The RAM functions as a data memory that stores data used
during the execution of the program in the CPU 110 and 1s
used as a work area. The input 130 1s constituted by a key-
board, mouse, etc. and the output 140 1s constituted by a
liquid crystal display (LCD), a cathode ray tube (CRT) dis-
play, a printer, etc.

Before describing the maximum likelithood (ML) algo-
rithm for use with the present invention, 1ts derivation process
will be discussed, infra.

Mixing Model and Signal Assumption
1. The Mixing Model

First, the measurements of L source signals by an equis-
paced linear array ol D sensors under far-field assumption
where only the direct path 1s present are considered. In this
case, without loss of generality, one can absorb the attenua-
tion and delay parameters of the first mixture x,(t), into the
definition of the sources:

(1)

L
= Z St I) -I-Fll
=1

l—ﬂk.g)SgI Tkg)-l-ﬂk(f)Q{k{D

Mh

{=1

where nl, .. . nD are the sensor noises, and (o, ;; T,;;) are the
attenuation and delay parameters of source 1 to sensor d. For
the far-field model and equispaced sensor array, the attenua-
tions o ;; and delays T, are linearly distributed across the
sensors (1.e., with respect to index d). Thus, one can define the
average attenuation o, and delay t,, so that

ﬂd?f:(d—l)ﬂgﬁ Td?f:(d—l)’ch 1 ngDJ 1 EZEL (2)

A1s used to denote the maximal possible delay between
adjacent sensors, and thus IT,|=A, V1.

The short-time Fourier transform of signals X (t), s,(t), and
n (t), are denoted by X ,(k, w), S,(k, w)), N (k, w) respec-
tively, with respect to a window W(t), where k 1s the frame
index, and w the frequency mdex. The mixing model (equa-
tion (1)) turns 1nto

(3)
Xtk w)= ) (1= (d = Dape VS (k, w) + Nytk, w)

or, more compactly,

L (4)
Xk, w) = Z Z()S; (k, w) + Nk, w)

with

Z{io)=[1(1-a)e-iwtl . .. (1-(D-Dae-in(D-1)t,]* (5)
and X, N the D-vectors of measurements, respectively noises.
When no danger of confusion arises, the arguments k, o are

dropped.

Assume the noise 1s Gaussian distributed with a covariance
matrix of the form

R =0T, (6)
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4

where o~ is the average noise field spectral power, and T", the
coherence matrix. The uncorrelated noise field 1s character-
1zed by the 1dentity matrix,

r =1, (7)

whereas the 1sotropic, diffuse noise field has the coherence
matrix given by (equation (5))

(8)

SINC(WT (D — 1))

SINC(WTmax (D — 2))

1 SINC{( Ty ax )

SINC{(0 Ty ax ) 1

s1nc(WTmax (2 — 1)) SINC((W T max ) 1

Once one has the measurements (X,(t), . . ., X5(t)); =;= 01
the mixing model, 1n order to determine the ML estimates of
the mixing parameters (az,, T;); =;—; and the source signals
(s l(’[) ., S;(t)); =;=, 1n the presence of 1sotropic diffuse
noise and in the “non-square” case, one uses the W-disjoint
orthogonality assumption, discussed 1nira.

2. The W-Disjoint Orthogonal Signal Model

According to the W-Disjoint Orthogonal Signal Model,
two signals s, and s, are called W-disjoint orthogonal, for a
given windowing function W(t), if the supports of the win-
dowed Fourier transforms of s, and s, are disjoint, that 1s:

S (kw)Ss5k,w)=0, Vk,» (9)

For L sources S,, . .., S; the defimition generalizes to:

Sy(k.0)S;(k,0)=0, V1 =i=j<L, Yk, (10)

Equation (9) holds in an approximate sense for real speech
signals and a large class of real signals. In addition, equation
(9) can be seen as the limit of a stochastic model.

Belore deriving the maximum likelithood (ML) estimator
two assumptions are made: (1) equation (10)1s satisfied for all
practical purposes; and (2) noise 1s Gaussian distributed with
zero mean and coherence given by equation (8).

The ML Estimator of Signal and Mixing Parameters

The joint ML estimator of parameters and source signals
under equation (10) 1s now dertved.

-

T'he source signals naturally partition the time-frequency
plane into L disjoint subsets €2, . . ., £, where each source
signal 1s non-zero (1.e., active). Thus, the signals are given by
the collection €2,, . . ., £, and one complex variable S that
defines the active signal:

S, (k,0)=S (k,0) 1 (k) (11)

Let the model parameters 0 consist of the mixing param-
eters (., T;), I =1=L, the partition (€2;), —;,—, and S. Based on
equations (4) and (6) shown above, its likelihood and maxi-
mum log-likelithood estimator are given by:

(12a)

1
ﬂDG-ZD EXP{— 2 Y7k, o) w)Y(k, m)}

wo=[] []

=1 (kw)ely

(12b)

L
Oue = argming » > Yi(k, o), @)Yk, )
=1 (k,w}eﬂi

where Y (k, o)=X(k, w)-Z,(0)S/k, ®). As shown by equa-
tions (12a and 12b), L(0) 1s the likelthood and 0,,, 1s the
maximum log-likelihood estimator. For any partition

(€2,, ..., &,) we define the selection map X: TF-plane—
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{1, ..., L} 2k, o=l iff (k, o) € L,. Zdefines a unique
partition. Optimizing over S 1n equation (12b) one obtains

Zirtx (13)

S =
ZfF;lZg

where 1=2(k, w). Then denote the mixing parameters A=(a,,
T,); =;—;. Inserting equation (13) into equation (12b), the
optimization problem reduces to:

(fm, E)ZMgmHXA,EI(A,, =) (14)

where:

(15)

Z 75 T Xk, o)
J(A,E): | (&)t R ( )l

S (k) [ Zsik
(& ,tw)

The criterion to maximize thus depends on a set of con-
tinuous parameters A, and a selection map 2 as shown in
equation (15). The optimization algorithm for such a criterion
works as follows: (1) optimization 1s performed over the
selection map X (1.e., the partition); and (2) over the continu-
ous parameters A. This procedure 1s then iterated until the
criterion reaches a saturation tloor and because the criterion is
bounded above, 1t will converge.

The optimization over the continuous parameters and over
the selection map will now be described.

1. Optimal Partition
(Given a set of mixing parameters, A=(a,, T,),=I=L, the
optimal selection map 1s given by

Za Tt X (K, )] (16)

LS w) U Zs i )

Yk, w) = argmax;

The partition then becomes: Q ={(k, m)IZ(k, w)=1}.

2. Optimal Mixing Parameters

Given a partition (£2;), =1=L, the optimal mixing param-
cters are obtained independently for each 1 by the following
equation:

(ah %f) — argInaXG!,T.{ %

(k)i

12340 Tn X ey )] (17)

Zg(k,m}rr; lZZ{k,m}

It 1s to be noted that both the denominator and numerator
depend on w, unlike the independent noise case where the
numerator 1s independent of k and w. Thus, a 2-dimensional
optimization procedure 1s required 1n order to solve equation
(17). In order to compute the optimum mixing parameters a
gradient descent 1s applied to equation (17), discussed here-
inafter with regard to FIG. 2.

3. ML Algorithm

FI1G. 2 1s a flowchart i1llustrating an ML algorithm accord-
ing to an exemplary embodiment of the present invention. As
shown in FIG. 2, the mixing parameters (a,”, T,”), =1=L are
initialized with random values so that |a,’I<1 and It,’I<A
(step 210). In step 210, variables loop index s and alignment
criterion J° are set=0 and a stopping threshold € 1s chosen.
This threshold guarantees that the algorithms will stop run-
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6

ning 1n finite amount of time, and controls the degree of
approximation to the solution of equation (14). Next, the
optimal partition (Q;”*"),=I=L and selection map X" are
computed by solving equation (16) with the mixing param-
cters a,=a;” and T,__; (step 220). After the optimal partition
and selection map are computed, the optimal mixing param-
eters are computed by applying a gradient descent to equation
(17)until it converges to a local optimum (a,°*", t,>*") for each
1=I=L, and subset of time-frequency points Q **' (step 230).
Subsequently, s 1s set=s +1 and J'=I(A°, 2°) 1s computed (step
240). If (FF-J~1)/J°>E the above process is repeated and one
goes back to step 220 (step 250). If, however, (J°-J1)/J° <&
the estimated parameters after s iterations become o ~=a,,
t,~T,, and €2,=C27° and the algorithm proceeds to step 260
(step 250).

As further shown 1n FIG. 2, once the mixing parameters
have been estimated, two independent linear filters are
applied thereto. The first linear filter (equation (13))1s applied
across the spatial channels and it performs a beamforming 1n
order to reduce the output noise (step 260). The second linear
filter (equation (11)) 1s applied across the time-frequency
domain and solves the source separation by selecting the
time-frequency points, where by the W-disjoint orthogonality
assumption (discussed above) only one source 1s active (step
2770). After step 270, the resulting data 1s converted from the
time-irequency domain to the time-domain (step 280) and 1t 1s
then output (step 290) to an output 140, for example a loud-
speaker, an LCD or CRT display or stored 1in the memory 120

of a CPU 110, as shown in FIG. 1.

It 1s to be understood that the ML algorithm described
above can be modified such that the computation of optimal
mixing parameters in step 230 can be performed before the
computation of the optimal partition step 220. In addition, the
ML algorithm can be modified to deal with an echoic mixing
model or different array configurations at the expense of
increased computational complexity. This modification
requires knowledge of the number of sources; however, this
number 1s not limited to the number of sensors and, 1t works
in the non-square case, which 1s the case when the number of
sources 15 bigger or smaller than the number of sensors.

Experimental Results

The ML algorithm discussed above was implemented and
applied to realistic synthetic mixtures generated with a ray
tracing model. The mixtures consisted of four source signals
in different room environments and Gaussian noise. The
room size for the experiment was 4x5x3.2 m. Four setups
corresponding to anechoic mixing, low echoic (e.g., rever-
beration time 18 ms), echoic (e.g., reverberation time 130
ms), and strong echoic (e.g., reverberation time 260 ms) were
used. The microphones formed a linear array with 2 cm spac-
ing. Source signals were distributed in the room and 1nput
signals were sampled at 16 Khz. For time-frequency repre-
sentation, a Hamming window of 256 samples and 50% over-
lap was used and coherent noise was added on each channel.
The average mput signal-to-interference-ratio (SIR) was
about -5 dB and, the average individual signal-to-noise ratio
(SNR) was 10 dB (i.e., SNR of one source with respect to
noise only). Each test was performed three times with inde-
pendent noise realizations that were filtered to the 1sotropic
diffuse noise coherence.

The optimal mixing parameters (equation (17)) were
solved by performing 30 gradient descent steps at each 1tera-
tion (discussed 1n step 230). Under the conditions of this
experiment, the ML algorithm converged very fast. In at most
five 1iterations it reached 0.1% of the local maximum. In
addition, the algorithm converged more often to the true
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directpath parameters when small noise was added to the
diagonal of (matrix (8)). I', was chosen as the sum between
(matrix (8)) and 0.01 times the 1dentity matrix. The identity
matrix 1s the square matrix whose every entry 1s=0 except for
the diagonal elements which are=1.

In the following discussion the results from the above
experiment will be described. In order to compare the results,
three separate criteria were used: (1) output average signal to
interference ratio gain (SIR gain) (which included other
voices and noise); (2) segmental signal to noise ratio (SNR);
and (3) signal distortion. The criteria are defined as follows:

N (18)
SIRgain = : E 10log; o ISeII” 11X = S
~ AT . 10N . 2 2
N k=1 HS_SDH 15l
N : (19)
1 [15:]]
segSNR = — 10log; g — 5
N k=1 S_SfH

(20)

Ny
2
. . 1 ”SD - S:”
distortion = — 10log,, 5
N £ i

where: ~ S is the estimated signal that contains the S, contri-
bution of the orniginal signal; X 1s the mixing at sensor 1, and
S, 1s the input signal of interest at sensor 1; N 1s the number of
frames where the summand 1s above —10 dB for SIR gain and
segmental SNR, and -30 dB for distortion. In this compari-
son, the summands for SIR gain and segmental SNR compu-
tation were saturated at +30 dB and +10 dB for distortion. It
1s to be understood that SIR gain should be a large positive,
whereas distortion should be a large negative.

FI1G. 3 illustrates the SIR gains of 2-8 microphones on four
data types (i.e., anechoic, low echoic, echoic and strong
echoic). As shown in FIG. 3, each bar for the four data types
includes one standard deviation bound. FIG. 4 illustrates
segmental SNRs for 2-8 microphones on the four data types.
As shown 1n FIG. 4, each bar for the four data types includes
one standard deviation bound. FIG. 5 1llustrates an example
of 6-channel algorithmic behavior on the mixture of coherent
noise and four voices (where D=4), with the separated outputs
indicated by s, -s,. The distortion values for =5 dB input SIR
and 10 dB individual mput SNR with the mean (standard
deviation) for D number of microphones (1.e., sensors) of the
four data types are shown below 1n Table 1.

TABLE 1
D Anechoic Low Echoic Echoic Strong Echoic
2 -3.98 (1.35) -3.49 (1.17) -2.58 (0.92) -2.61 (1.01)
4 -4.36 (1.41) -3.69 (1.53) -2.79 (0.92) -2.70 (0.78)
6 -4.43 (1.68) -3.74 (1.10)  -2.88 (0.93) -2.61 (0.85)
8 -4.36 (1.71) -3.57 (1.18)  -2.61 (0.73) -2.01 (0.50)

A separation of all voices particularly for D=4 1s shown in
FIGS. 3-5 and Table 1. As illustrated by FIGS. 3-5 and Table
1, the SIR gains improve with an increase in the number of
sensors D. Thus, indicating that separation power of the over-
all system increases with a noticeable decrease 1n perfor-
mance moving from anechoic to echoic data.

It an alternative variant of the present invention other mix-
ing models may be used in place of the above mixing model.

It 1s to be understood that the present invention may be
implemented 1n various forms of hardware, soitware, firm-
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ware, special purpose processors, or a combination thereof. In
one embodiment, the present invention may be implemented
in soitware as an application program tangibly embodied on
a program storage device. The application program may be
uploaded to, and executed by, a machine comprising any
suitable architecture.

It 1s to be further understood that, because some of the
constituent system components and method steps depicted 1n
the accompanying figures may be implemented 1n software,
the actual connections between the system components (or
the process steps) may difler depending on the manner in
which the present invention 1s programmed. Given the teach-
ings of the present invention provided herein, one of ordinary
skill 1n the art will be able to contemplate these and similar
implementations or configurations of the present invention.

It should also be understood that the above description 1s
only representative of 1llustrative embodiments. For the con-
venience of the reader, the above description has focused on
a representative sample of possible embodiments, a sample
that 1s 1llustrative of the principles of the invention. The
description has not attempted to exhaustively enumerate all
possible vanations. That alternative embodiments may not
have been presented for a specific portion of the invention, or
that further undescribed alternatives may be available for a
portion, 1s not to be considered a disclaimer of those alternate
embodiments. Other applications and embodiments can be
straightforwardly implemented without departing from the
spirit and scope of the present invention. It 1s therefore
intended, that the invention not be limited to the specifically
described embodiments, because numerous permutations and
combinations of the above and implementations involving
non-inventive substitutions for the above can be created, but
the invention 1s to be defined 1n accordance with the claims
that follow. It can be appreciated that many of those unde-
scribed embodiments are within the literal scope of the fol-
lowing claims, and that others are equivalent.

What 1s claimed 1s:
1. A method for non-square blind source separation (BSS)
under coherent noise, comprising:

estimating mixing parameters of a mixed source signal;

first filtering the estimated mixing parameters so that out-
put noise 1s reduced; and

second filtering the estimated mixing parameters so that
the mixed source signal 1s separated from the output
noise,

wherein the step of estimating the mixing parameters coms-
Prises:

computing a partition and selection map by using the fol-
lowing equation

_ 2
|ZE(;(,M} rnl X(k, w)|

Sk, w) = argmax,

r

Zf(k ) [} 25k )

with a~c.;” and t/=t,"; and
computing mixing parameters by applying a gradient
descent to the following equation

(#,tw)e Ly

_ 2
|Z§“{?w} [, X (k, w)|
500 5 Zs e,

+f +{
7" 1" for each

until 1t converges to a local optimum o )
ZS+

1=I=L and subset of time-irequency points £2
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2. The method of claim 1, wherein the step of estimating,
the mixing parameters further comprises:

computing an alignment criterion.

3. The method of claim 2, wherein the alignment criterion
are computed by

FP=I(A’, 2°) alter setting s=s+1.

4. The method of claim 3, wherein the computation of the
alignment criterion is iterated until (F*~°~")/T°<€.

5. The method of claim 1, wherein a first filter 1s used for
the first filtering, the first filter 1s

ZiT, X

§ = .
ZfrHlZg

6. The method of claim 5, wherein the first filter 1s applied
across spatial channels.

7. The method of claim 5, wherein the first filter performs
a beamiorming.

8. The method of claim 1, wherein a second filter 1s used for
the second filtering, the second filter 1s

Sf(k: W):S(ka W)lﬂi(k: W)

9. The method of claim 8, wherein the second filter 1s
applied across the time-irequency domain.

10. The method of claim 8, wherein the second filter per-
forms a time-frequency masking to select time frequency
points where only one source 1s active according to a W-dis-
joint orthogonality assumption.

11. The method of claim 1, further comprising:

converting filtered data from a time-frequency domain to a

time-domain.

12. The method of claim 11, further comprising:

outputting the converted data.

13. A system for non-square blind source separation (BSS)
under coherent noise, comprising:

an estimator for estimating mixing parameters ol a mixed

source signal;

a first filter for filtering the estimated mixing parameters so

that output noise 1s reduced; and

a second filter for filtering the estimated mixing parameters

so that the mixed source signal 1s separated from the
output noise,

wherein the mixing parameters are estimated by:

computing a partition and selection man by using the fol-

lowing equation

|Z§(k,m)r;l X (K, 0’-»’)|2

r

Sk, w) =
(EM) argmﬂx! Zi(k,m}rHlZZ(k,m}

with a~c,;” and t/=t,; and
computing mixing parameters by applying a gradient
descent to the following equation

(&g, T1) = argmax, . E

(f,tw)e Ly

_ 2
|Z§(k,w} [, X (k, w)|
L5l n Y Z s,

until it converges to a local optimum o, ©,** for each

1=1=L and subset of time-frequency points Q,"*.
14. The system of claim 13, wherein the mixing parameters
are further estimated by:

10

15

20

25

30

35

40

45

50

55

60

65

10

computing an alignment criterion by calculating the fol-
lowing

IP=J(A", 2°).

15. The system of claim 13, wherein the first filter 1s

ZiT, X

S = .
Zf r;lZg

16. The system of claim 13, wherein the second filter 1s
Sz’(k: W):S(k: W)lﬂf(k: W)

17. A computer program product comprising a computer
useable medium having computer program logic recorded
thereon for non-square blind source separation (BSS) under
coherent noise, the computer program logic comprising:

program code for estimating mixing parameters of a mixed
source signal;

program code for first filtering the estimated mixing
parameters so that output noise 1s reduced; and

program code for second filtering the estimated mixing
parameters so that the mixed source signal 1s separated
from the output noises,

wherein the mixing parameters are estimated by:

computing a partition and selection man by using the fol-
lowing equation

—1 2
|ZE(R,M} [,” Xk, w)]
Lsieonl n Vs w)

Sk, w) = argmax,

with o,=a,” and T,~t;”; and
computing mixing parameters by applying a gradient
descent to the following equation

({?h fi) — ﬂrgma‘x&:.{,r! %

(#,tw)e L)y

Zr i Dt X (&, )

LS ihw) [ L5k w)

until it converges to a local optimum o**, T,°*' for each

1=1=L and subset of time-frequency points €2+ .

18. The computer program product of claim 17, the pro-
gram code for estimating mixing parameters further compris-
ng:

program code for computing an alignment criterion.

19. The computer program product of claim 18, wherein
the alignment criterion are computed by the following

IP=I(A’, 2°) after setting s=s+1.

20. The computer program product of claim 19, wherein
the computation of the alignment criterion 1s iterated until
(FP=-FHir<e.

21. The computer program product of claim 17, wherein
the first filtering 1s computed by the following

ZiT, X
Zf F;lZg .

S =

22. The computer program product of claim 17, wherein
the second filtering 1s computed by the following

S.(k, w)=S(k, W)l o:(k, w).
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23. The system of claim 13, wherein the first filter 1s
applied across spatial channels and performs a beamforming.

24. The system of claim 13, wherein the second filter 1s
applied across the time-1requency domain and performs time-
frequency masking to select time frequency points where
only one source 1s active according to a W-disjoint orthogo-
nality assumption.

25. A method for non-square blind source separation (BSS)
under coherent noise, comprising:

initializing mixing parameters with random values;

setting a source signal and alignment value to zero;

choosing a stopping threshold;

computing an optimal partition and selection map by using,

the following equation

—1 2
IZE(;{,M}FH Xk, w)|
Lyl n Y Zs b )

Sk, w) = argmax,

with a~c.;” and T,=T;;

10

15

12

computing the mixing parameters by applying a gradient
descent to the following equation

—1 2
(@, T;) = argmax E Sl n X )
[« +f{/ — g, T " _
Lo sz,m)rnlzﬂk,w}

(#,tw)e Ly

until it converges to a local optimum o**, T,** for each
1=1=L and subset of time-frequency points Q,°* ;
computing an alignment criterion;

first filtering the mixing parameters so that output noise 1s
reduced;

second filtering the mixing parameters so that a mixed
source signal 1s separated from the output noise;

converting filtered data from a time-frequency domain to a
time-domain; and

outputting the converted data.
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