
Sparse Factorizations of Symmetric Matrices and
Decompositions of Trace-Class Operators

Radu Balan

Department of Mathematics, CSCAMM and NWC
University of Maryland, College Park, MD

June 27, 2019
Aspects of Time-Frequency Analysis (ATFA19)

Politecnico di Torino, DISMA, June 25–27 2019, Torino, ITALY



”This material is based upon work supported by the National Science
Foundation under Grant No. DMS-1816608. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.” The author has been partially supported by LTS under grant
H9823013D00560049.

Collaborators: Kasso Okoudjou (UMD), Anirudha Poria (IIT Guwahati),
Michael Rawson (UMD), Yang Wang (HKUST).



Table of Contents:

1 Problem Formulation

2 The (Counter)Example

3 Matrix Decompositions



Problem Formulation The (Counter)Example Matrix Decompositions

Problem Formulation
Function Space Formulation

Let T : L2(R)→ L2(R) be a linear operator of the form:

Tf (x) =
∫ ∞
−∞

K (x , y)f (y)dy .

Assume the following hold true:
1 Kernel K ∈ M1(R2) belongs to the modulation space M1 (a.k.a. the

Feichtinger algebra, or the Segal algebra for the algebra of TF ops).
Note: This assumption imples that T is a trace-class compact
operator.

2 T is self-adjoint, i.e., K (x , y) = K (y , x), for every x , y ,∈ R;
3 T is positive semi-definite, i.e.,

∫∞
−∞

∫∞
−∞ K (x , y)f (y)f (x)dydx ≥ 0,

for every f ∈ L2(R). Note: Assumption 2 is redundant in the complex
case.

In this talk we study rank-1 series expansions of
T =

∑
k gkg∗k :=

∑
k 〈·, gk〉gk that satisfy certain convergence properties.
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Problem Formulation
Function Space Formulation

The starting point of this study is a problem stated by H. Feichtinger at a
2004 Oberwolfach mini-workshop., and then reformulated and extended by
Heil and Larson (2004, 2008).
Let (fk)k≥0 be an orthogonal set of eigenfunctions, normalized so that
Tfk = ‖fk‖22fk and T =

∑
k fk f ∗k . Then

tr(T ) =
∑
k≥0
‖fk‖22 =

∑
k≥0
‖fk‖2M2 ≤ ‖K‖M1 <∞.

Fact: It is known [HeilLars04/08] that fk ∈ M1(R) for each k.

Problem 1 [Feichtinger2004]: Does
∑

k≥0 ‖fk‖
2
M1 <∞ ?

Problem 2 [HeilLarson04]: If the answer is negative to Problem 1, is there
a decomposition T =

∑
k gkg∗k , not necessarily spectral, so that∑

k≥0 ‖gk‖2M1 <∞ ?
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Overview of results
I. We construct explicitely an operator T with simple functions that
satisfies the previous assumptions and additionally:

1 Its eigenfunctions (fk)k≥0 satisfy
∑

k≥0 ‖fk‖
2
M1 =∞.

2 There exists a decomposition T =
∑

k≥0 gkg∗k so that∑
k≥0 ‖gk‖2M1 <∞

II. We introduce a finite-dimensional inequality/hypothesis. We prove the
following results:

1 If the hypothesis is false then there exists a non-negative operator T
with kernel in M1 that does not admit a decomposition
T =

∑
k≥0 gkg∗k so that

∑
k≥0 ‖gk‖2M1 <∞.

2 On the other hand, if the hypothesis is true, then the set of
non-negative operators T with kernel in M1 that admit a
decomposition T =

∑
k≥0 gkg∗k so that

∑
k≥0 ‖gk‖2M1 <∞ is dense

in the set of non-negative operators with kernel in M1.
Radu Balan (UMD) Rank 1 Expansions
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Problem Formulation
Interlude: Modulation space M1

The Feichtinger space M1 is defined as follows. Let g : R→ R,
g(x) = e−πx2 be the Gaussian window. Let

f ∈ S′ 7→ Vg f (t,w) =
∫ ∞
−∞

e−2πiwx f (x)g(x − t)dx

be the windowed Fourier transform of f with respect to g . Then

M1(R) =
{

f ∈ L2(R) , ‖f ‖M1 :=
∫ ∞
−∞

∫ ∞
−∞
|Vg f (t,w)|dt dw <∞

}
.

Fact: [FeichtGrochWaln92] The Wilson ONB is an unconditional basis in
M1. Let (wn)n≥0 denote this Wilson basis. Then we can identify M1 with
l1(N) space, with equivalent norms:

M1(R) = {f =
∑
n≥0

cnwn , ‖f ‖M1 ∼
∑
n≥0
|cn|}.
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Problem (Re)Formulation
Matrix Language

Consider an infinite matrix A = (Am,n)m,n≥0 so that

‖A‖∧ := ‖A‖1,1 :=
∑

m,n≥0
|Am,n| <∞.

This implies that A acts on l2(N) as a trace-class compact operator.
Assume additionally A = A∗ ≥ 0 as a quadratic form.
Let (ek)k≥0 denote an orthogonal set of eigenvectors normalized so that
A =

∑
k≥0 eke∗k . It is easy to check that ek ∈ l1(N), for each k.

Equivalent reformulations of the two problems:

Problem 1: Does it hold
∑

k≥0 ‖ek‖21 <∞ ?
Problem 2: If negative to problem 1, is there a factorization
A =

∑
k≥0 fk f ∗k so that

∑
k≥0 ‖fk‖

2
1 <∞ ?
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The Good, the Bad ...
Consider the identity matrix In and two possible decompositions:

In =
n∑

k=1
δkδ
∗
k =

n−1∑
k=0

en,ke∗n,k

where {δk}k is the canonical ONB, and {en,k}k is the Fourier ONB:

en,k = 1√
n
[

1 e−2πik/n · · · e−2πik(n−1)/n
]T
.

Notice: n∑
k=1
‖δk‖21 = n→ ”good decomposition”

n−1∑
k=0
‖en,k‖21 = n2 → ”bad decomposition”

Radu Balan (UMD) Rank 1 Expansions
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The (Counter)Example

We construct an example that answers negatively problem 1, but positively
problem 2.
Consider the form: T = T1 ⊕ T2 ⊕ · · · ⊕ Tn ⊕ · · · ,

T =



T1
T2

. . .
Tn

. . .



Radu Balan (UMD) Rank 1 Expansions
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The CounterExample
... and the Ugly

Each block Tn is diagonalized by the Fourier ONB, and has positive simple
eigenvalues:

Tn = 1
n3

n−1∑
k=0

(
1 + k

np

)
en,ke∗n,k .

Thus:

T =
⊕
n≥1

n−1∑
k=0

1
n3

(
1 + k

np

)
en,ke∗n,k .
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Problem 1
Negative Answer

The eigendecomposition of T is

T =
∑
n≥1

n−1∑
k=0

fn,k f ∗n,k , fn,k = 1√
n3

√
1 + k

np en,k .

Then ∑
n≥1

n−1∑
k=0
‖fn,k‖21 =

∑
n≥1

n−1∑
k=0

1
n3 (1 + k

np )n ≥
∑
n≥1

1
n =∞

Hence the answer to problem 1 is negative: There is an operator
S : f 7→ Sf (x) =

∫
K (x , y)f (y)dy with K ∈ M1(R2) and S = S∗ ≥ 0, so

that its spectral decomposition S =
∑

k≥1 〈·, fk〉fk satisfies∑
k ‖fk‖

2
M1 =∞.

Radu Balan (UMD) Rank 1 Expansions
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Problem 2
Positive Answer

We show now that same operator T we constructed earlier admits a
decomposition T =

∑
m gmg∗m so that

∑
m ‖gm‖21 <∞.

Notice:

Tn = 1
n3

n−1∑
k=0

(
1 + k

np

)
en,ke∗n,k = 1

n3

n−1∑
k=0

δkδ
∗
k + 1

n3+p

n−1∑
k=0

ken,ke∗n,k

Thus the induced decomposition

Tn =
n−1∑
k=0

g1,n,kg∗1,n,k +
n−1∑
k=0

g2,n,kg∗2,n,k

satisfies
n−1∑
k=0
‖g1,n,k‖21 + ‖g2,n,k‖21 = 1

n2 + 1
n2+p

n(n − 1)
2 ≤ 1

n2 + 1
np

Radu Balan (UMD) Rank 1 Expansions
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Problem 2
Positive Answer - cont’d

Thus:

T =
⊕
n≥1

n−1∑
k=0

g1,n,kg∗1,n,k + g2,n,kg∗2,n,k

satisfies ∑
n≥1

n−1∑
k=0
‖g1,n,k‖21 + ‖g2,n,k‖21 ≤

∑
n≥1

1
n2 + 1

np <∞

Hence the answer to the second problem is affirmative: There is an
operator S = S∗ ≥ 0, f 7→ Sf (x) =

∫
K (x , y)f (y)dy with K ∈ M1(R2)

that admits a decomposition S =
∑

k≥1 〈·, gk〉gk that satisfies∑
k ‖gk‖2M1 <∞, but whose spectral decomposition does not satisfy the

same localization condition.
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Tensor Products

Consider A ∈ Cn×n. We seek ”optimal” decompositions of A into a sum of
rank-1 operators: A =

∑
k ukv∗k .

In this talk we assume A to be positive semi-definite: A = A∗ ≥ 0.
Criterion 1:

J+(A) = inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21.

Criterion 2:
J0(A) = inf

A=
∑m

k=1 εk fk f ∗
k

m∑
k=1
‖fk‖21

where εk ∈ {+1,−1}.
Criterion 3:

J(A) = inf
A=
∑m

k=1 fkg∗
k

m∑
k=1
‖fk‖1‖gk‖1

Radu Balan (UMD) Rank 1 Expansions
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What we know

J(A) = inf
A=
∑m

k=1 fkg∗
k

m∑
k=1
‖fk‖1‖gk‖1

J0(A) = inf
A=
∑m

k=1 εk fk f ∗
k

m∑
k=1
‖fk‖21

J+(A) = inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21.

1. J∧, J0, J are positive, homogeneous, and convex on Sym+(Cn).
2. J , J0 extend to norms on Sym(Cn).
3. The following hold true:∑

i ,j |Ai ,j | =: ‖A‖1,1 = J ≤ J0(A) ≤ 2‖A‖1,1 , ∀A ∈ Sym(Cn).

‖A‖1,1 = J ≤ J0(A) ≤ J+(A) ≤ n‖A‖1,1 , ∀A ∈ Sym+(Cn).

Radu Balan (UMD) Rank 1 Expansions



Problem Formulation The (Counter)Example Matrix Decompositions

What we know

J(A) = inf
A=
∑m

k=1 fkg∗
k

m∑
k=1
‖fk‖1‖gk‖1

J0(A) = inf
A=
∑m

k=1 εk fk f ∗
k

m∑
k=1
‖fk‖21

J+(A) = inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21.

1. J∧, J0, J are positive, homogeneous, and convex on Sym+(Cn).

2. J , J0 extend to norms on Sym(Cn).
3. The following hold true:∑

i ,j |Ai ,j | =: ‖A‖1,1 = J ≤ J0(A) ≤ 2‖A‖1,1 , ∀A ∈ Sym(Cn).

‖A‖1,1 = J ≤ J0(A) ≤ J+(A) ≤ n‖A‖1,1 , ∀A ∈ Sym+(Cn).

Radu Balan (UMD) Rank 1 Expansions



Problem Formulation The (Counter)Example Matrix Decompositions

What we know

J(A) = inf
A=
∑m

k=1 fkg∗
k

m∑
k=1
‖fk‖1‖gk‖1

J0(A) = inf
A=
∑m

k=1 εk fk f ∗
k

m∑
k=1
‖fk‖21

J+(A) = inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21.

1. J∧, J0, J are positive, homogeneous, and convex on Sym+(Cn).
2. J , J0 extend to norms on Sym(Cn).

3. The following hold true:∑
i ,j |Ai ,j | =: ‖A‖1,1 = J ≤ J0(A) ≤ 2‖A‖1,1 , ∀A ∈ Sym(Cn).

‖A‖1,1 = J ≤ J0(A) ≤ J+(A) ≤ n‖A‖1,1 , ∀A ∈ Sym+(Cn).

Radu Balan (UMD) Rank 1 Expansions



Problem Formulation The (Counter)Example Matrix Decompositions

What we know

J(A) = inf
A=
∑m

k=1 fkg∗
k

m∑
k=1
‖fk‖1‖gk‖1

J0(A) = inf
A=
∑m

k=1 εk fk f ∗
k

m∑
k=1
‖fk‖21

J+(A) = inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21.

1. J∧, J0, J are positive, homogeneous, and convex on Sym+(Cn).
2. J , J0 extend to norms on Sym(Cn).
3. The following hold true:∑

i ,j |Ai ,j | =: ‖A‖1,1 = J ≤ J0(A) ≤ 2‖A‖1,1 , ∀A ∈ Sym(Cn).

‖A‖1,1 = J ≤ J0(A) ≤ J+(A) ≤ n‖A‖1,1 , ∀A ∈ Sym+(Cn).

Radu Balan (UMD) Rank 1 Expansions



Problem Formulation The (Counter)Example Matrix Decompositions

Hypothesis
We posit the following hypothesis: There is a universal constant C0 <∞
so that for any n ≥ 1 and every positive semidefinite A ∈ Cn×n,

J+(A) = inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21 ≤ C0

n∑
i ,j=1
|Ai ,j | (H)

In a different formulation: The sequence (Cn)n≥1,

Cn = sup
A∈S+(Cn) : ‖A‖1,1=1

inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21

is bounded.
Notice the sequence is monotonically increasing, Cn ≤ Cn+1 by a simple
bordering argument. Hence the hypothesis is equivalent to:

lim
n→∞

Cn = C0 <∞ (H)

Radu Balan (UMD) Rank 1 Expansions
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Consequences of the Hypothesis
If the Hypothesis is False

Theorem (A)
If Hypothesis (H) is false, then there exists an operator A ∈ Sym+(l2(N))
with ‖A‖1,1 <∞ so that for any operator-norm convergent expansion
A =

∑
k≥1 fk f ∗k , the series

∑
k≥1 ‖fk‖

2
1 =∞ is divergent .

In the T-F language:

Theorem (B)
If Hypothesis (H) is false, then there is a positive trace-class operator
T ∈ Sym+(L2(R)) with kernel K ∈ M1(R2) so that for any operator-norm
convergent expansion T =

∑
k≥1 〈·, fk〉fk , the series

∑
k≥1 ‖fk‖

2
M1 =∞ is

divergent.
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If the Hypothesis is False
Proof of Theorem A

Proof of Theorem A:
For each n = 1, 2, ... let An ∈ Sym+(Cn) so that ‖An‖1,1 = 1,
Cn = J+(An) and limn→∞ J+(An) =∞. Let (wn)n≥1 be a sequence of
non-negative numbers so that

∑
n≥1 wn <∞ but

∑
n≥1 wnCn =∞. Then

consider the operator

A = (w1A1)⊕ (w2A2)⊕ · · · ⊕ (wnAn)⊕ · · ·

acting on l2(N). A direct computation shows A ∈ Sym+(l2(N)) and
‖A‖1,1 =

∑
n≥1 wn <∞. On the other hand, let A =

∑
k≥1 fk f ∗k a

decomposition of A into rank-1 matrices and let P1,P2, · · · ,Pn, · · · the
orthogonal projections onto the corresponding block in matrix A. Thus
PAP = 0⊕ · · · ⊕ 0⊕ An ⊕ 0⊕ · · · and P1 + P2 + · · ·+ Pn + · · · = 1.
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If the Hypothesis is False
Proof of Theorem A - cont’d

Let fk,n = Pnfk . Then

A =
∑

n,m≥1

∑
k≥1

fk,nf ∗k,m =
∑
n≥1

∑
k≥1

fn,k f ∗n,k

because the off-diagonal blocks must vanish. But then∑
k≥1 ‖fk‖

2
1 ≥

∑
n≥1

∑
k≥1 ‖fn,k‖

2
1 which implies that the optimal

decomposition of A involves expansions of each block An independently.
Therefore

J+(A) =
∑
n≥1

J+(An) =
∑
n≥1

wnCn =∞.

This shows Theorem A.

Theorem B is an immediate consequence.
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Consequences of the Hypothesis
If the Hypothesis is True

Theorem (C)
If the hypothesis (H) is true, then for any operator A ∈ Sym+(l2(N)) with
‖A‖1,1 <∞, and any ε > 0 there are vectors fk , gk ∈ l1(N), k = 1, 2, ...,
so that the operator-norm convergent expansion
A =

∑
k≥1 fk f ∗k −

∑
k≥1 gkg∗k satisfies∑

k≥1
‖fk‖21 ≤ C0‖A‖1,1 + ε ,

∑
k≥1
‖gk‖21 < ε.

In particular, the set

S = {A ∈ Sym+(l2(N)), ‖A‖1,1 <∞, ∃(fk)k : A =
∑
k≥1

fk f ∗k ,
∑
k≥1
‖fk‖21 <∞}

is dense in {A ∈ Sym+(l2(N)) , ‖A‖1,1 <∞}.
Radu Balan (UMD) Rank 1 Expansions



Problem Formulation The (Counter)Example Matrix Decompositions

Consequences of the Hypothesis
If the Hypothesis is True

Theorem (D)
If the hypothesis (H) is true, then for any operator T ∈ Sym+(L2(R)) with
kernel K ∈ M1(R2), and any ε > 0 there are vectors fk , gk ∈ M1(R),
k = 1, 2, ..., so that the operator-norm convergent expansion
T =

∑
k≥1 〈·, fk〉fk −

∑
k≥1 〈·, gk〉gk satisfies∑

k≥1
‖fk‖2M1 ≤ C0‖K‖M1(R2) + ε ,

∑
k≥1
‖gk‖2M1 < ε.

In particular, the set

S = {T ∈ Sym+(L2(R)), ‖K‖M1(R2) <∞,∃(fk)k : A =
∑
k≥1

〈·, fk〉fk ,
∑
k≥1

‖fk‖2
M1 <∞}

is dense in {T ∈ Sym+(L2(R)) , K ∈ M1(R2)}.
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If the Hypothesis is True
Proof of Theorem C

Proof of Theorem C:
Fix A = A∗ ≥ 0 with ‖A‖1,1 <∞, and ε > 0. Let n be large enough so
that the central [0, n]× [0, n] block An of A carries the norm within ε/C0:
‖A‖1,1 ≥

∑
0≤k,j≤n |Ak,j | > ‖A‖1,1 − ε

C0
. Then let f1, · · · , fm be a

decomposition of An,

An =
m∑

k=1
fk f ∗k so that ‖fk‖21 ≤ C0‖An‖1,1 ≤ C0‖A‖1,1.

Let B = A− An ∈ Sym(l2(N)) be the residual operator. Using the fact
that J0(B) ≤ 2‖B‖1,1 < 2ε

C0
≤ ε let fm+1, fm+1, · · · , g1, g2, · · · ∈ l1(N) be

so that:
B =

∑
k≥m+1

fk f ∗
k −

∑
k≥1

gkg∗
k

and ∑
k≥m+1

‖fk‖2
1 +
∑
k≥1

‖gk‖2
1 ≤ ε.

Radu Balan (UMD) Rank 1 Expansions



Problem Formulation The (Counter)Example Matrix Decompositions

If the Hypothesis is True
Proof of Theorem C

Putting together the two expansions, it follows

A =
∑
k≥1

fk f ∗k −
∑
k≥1

gkg∗k ,
∑
k≥1
‖fk‖21 ≤ C0‖A‖1,1 + ε ,

∑
k≥1
‖gk‖21 < ε.

Theorem D follows similarly.
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THANK YOU!!

...

QUESTIONS?
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