Permutation Invariance and Combinatorial

Optimizations with Graph Deep Learning

Radu Balan

Department of Mathematics, CSCAMM and NWC
University of Maryland, College Park, MD

April 1-3, 2019
Workshop on "Dimension reduction in physical and data sciences”
Duke University, Durham NC 27708

Acknowledgments

"This material is based upon work partially
supported by the National Science Founda-
tion under grant no. DMS-1413249 and
LTS under grant H9823013D00560049. Any
opinions, findings, and conclusions or rec-
ommendations expressed in this material are
those of the author(s) and do not necessar-
ily reflect the views of the National Science
Foundation.”

Collaborators:
Naveed Haghani (UMD) Debdeep Bhattacharya (GWU)
Maneesh Singh (Verisk)

Radu Balan (UMD) Rep and Opt 04/02/2019

Table of Contents:

@ Permutation Invariant Representations
@ Theory
@ Numerical Results

© Optimizations using Deep Learning
o Constructions
o DNN as UA
@ Numerical Results

Permutation Invariant Representations
©0000000

Theory

Permutation Invariant induced Representations

Consider the equivalence relation ~ on R"*9 indiced by the group of
permutation S,: for any X, X’ € R"™*9,

X~X & X =PX, forsome Pc€S,

Let M = R"*9/ ~ be the quotient space endowed with the natural

distance induced by Frobenius norm || - ||
d(Xl,XQ) = 'gélg HXI — PXQHF R 5\(1,5(2 € M.

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
©0000000

Theory

Permutation Invariant induced Representations

Consider the equivalence relation ~ on R"*9 indiced by the group of
permutation S,: for any X, X’ € R"™*9,

X~X & X =PX, forsome Pc€S,

Let M = R"*9/ ~ be the quotient space endowed with the natural

distance induced by Frobenius norm || - ||
d(Xl,XQ) = 'gélg HXI — PXQHF R 5\(1,5(2 € M.

The Problem: Construct a Lipschitz embedding & : M — R, i.e., an
integer m = m(n, d), a map o : R™9 — R™ and a constant L = L(a) >0
so that for any X, X’ € R"™*9,

Q If X ~ X' then o(X) = a(X')

Q If a(X) = a(X') then X ~ X’

@ [a(X) - a(X)[2 < Ld(X,X)

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
0@000000

Theory

Motivation (1)
Graph Learning Problems

Consider data graphs such as: social networks, transportation networks,
citation networks, chemical networks, protein networks, biological
networks, etc. Each such network is modeled as a (weighted) graph
(V, €, A) of n nodes, and a set of feature vectors {x;",---,x] } C RY that
x{
form the matrix X = : c R™9,
Xy
Two important problems involving a map 1 : (A, X) — f(A, X):
Q classification: f(A,X) € {1,2,---,c}
@ regression/prediction: f(A, X) € R.
In each case we expect the task to be invariant to vertices permutation:
f(PAPT PX) = f(A, X), for every P € S,.

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00@00000

Theory

Motivation (2)
Graph Convolutive Networks (GCN)

Kipf and Welling ('16) introduced a network structure that performs local
processing according to a modified adjacency matrix:

A
—_—
. . - Y
v |h=o(dXxWi+B) [L=c(AW, +By) | . | =c(AY, W, +By) [—>
—_—

A= D"Y2(] + A)D~1/2, where A is the adjacency matrix, or the graph
weight matrix, D is the diagonal with vertex degrees; o is the activation
map. An L-layer GCN has parameters (W4, By, ---, W, By).

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00@00000

Theory

Motivation (2)
Graph Convolutive Networks (GCN)

Kipf and Welling ('16) introduced a network structure that performs local
processing according to a modified adjacency matrix:

A
—_—
. . - Y
v |h=o(dXxWi+B) [L=c(AW, +By) | . | =c(AY, W, +By) [—>
—_—

A= D"Y2(] + A)D~1/2, where A is the adjacency matrix, or the graph
weight matrix, D is the diagonal with vertex degrees; o is the activation
map. An L-layer GCN has parameters (W4, By, ---, W, By).

Assume B; = PB;. Note the covariance property. for any P € S,,
(A, X) — (PAPT,PX) and Y + PY.

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
000@0000

Theory

Motivation (3)
Deep Learning with GCN

The two learning tasks (classification or regression) can be solved by the
following scheme:

GCN

1 SVM/NN

where Ext is a permutation invariant feature EXTractor, and SVM/NN is

a single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network).

The purpose of this (part of the) talk is to analyze the Ext component.

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00008000

Theory

Motivation (4)

Enzyme Classification Example

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;

@ No Permutation Invariant Component: Ext = Identity

o Fully connected NN with dense 3-layers and 120 internal units.

s OOt
T et
Hsesere

XXXt
3 PR RRAHHIHRIHRH IR HH KKK HRHHRHK KX HXIHIHHIHHIHX

Radu Balan (U

Rep and Opt 04/02/2019

Permutation Invariant Representations
00000800

Theory

The Measure Theoretic Embedding

First approach: Consider the map

n

b Mo PRY) L p(X)(6) = 3 ax — x)
k=1

where P(RY) denotes the convex set of probability measures over R9, and

6 denotes the Dirac measure.
Clearly u(X’) = u(X) iff X’ = PX for some P € S,,.

Main drawback: P(R9) is infinite dimensional!

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00000000

Theory

Finite Dimensional Embeddings

Architectures

Two classes of extractors:
@ Pooling Map — based on Max pooling
@ Readout Map — based on Sum pooling

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00000000

Theory

Finite Dimensional Embeddings

Architectures

Two classes of extractors:
@ Pooling Map — based on Max pooling
@ Readout Map — based on Sum pooling

Intuition in the case d = 1:
Max pooling:

AR5 R 0 AX) = (Xe(k)) k=1 5 Xn(1) = Xn(2) = 7 2> Xn(n)

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00000000

Theory

Finite Dimensional Embeddings

Architectures

Two classes of extractors:
@ Pooling Map — based on Max pooling
@ Readout Map — based on Sum pooling
Intuition in the case d = 1:
Max pooling:
AR R >‘(X) = (Xﬂ(k))kzl » Xr(1) > Xr(2) > 2 Xr(n)

Sum pooling:

o R =R, o(x) = (vk)ket » vk = > v(ak X))
j=1

where kernel v : R x R — R, e.g. v(a, t) = e (a8 or v(a = k, t) = tk.

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
0000000@

Theory

Pooling Mapping Approach

Fix a matrix R € R9*P_ Consider the map:
A:R™4 5 RP =R™ | A(X) = MXR)

where A acts columnwise (reorders monotonically decreasing each
column). Since A(MX) = A(X), then A : Rnxd — RMxD,

Theorem

For any matrix R € R9*(d+1) so that any d x d submatrix is invertible,

—

there is a subset Z C R"*9 of zero measure so that
A Rrxd\ 7 — R+ s fajthful (ie., injective).

No known tight bound yet as to the minimum D = D(n, d) so that there
is a matrix R so that A is faithful (injective).
However, due to local linearity, if A is faithful (injective), then it is stable.

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
©00000

Numerical Results

Enzyme Classification Example
Extraction with the Hadamard Matrix

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;
o Ext =N, Z=X(YR) with R = [/ Hadamard]. D =50, m = 50.
o Fully connected NN with dense 3-layers and 120 internal units.

R
B R R
I e

.
o

<o

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
0®0000

Numerical Results

Readout Mapping Approach

Kernel Sampling

Consider:
n n
¢ :R™ S R™ | (P(X)); = Z v(aj, xx) or (®(X)); = H v(aj, xx)
k=1 k=1
where v : R? x R? — R is a kernel, and xq, - - -, x,, denote the rows of
matrix X.

Known solutions: If m = oo, then there exists a ® that is globally faithful
(injective) and stable on compacts.

Interesting mathematical connexion: On compacts, some kernels v define
Repreducing Kernel Hilberts Spaces (RKHSs) and yield a decomposition

(P(X) J_ZUP (aj)gn(X)
p=1

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00000

Numerical Results

Enzyme Classification Example

Feature Extraction with Exponential Kernel Sampling

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;

e Ext: Zj=3%]_;exp(—l|lyx — zj|) with m = 120 and z; random.
o Fully connected NN with dense 3-layers and 120 internal units.

R B H MR R
.
x
P e
‘:
g 7!
A

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
00000

Numerical Results

Enzyme Classification Example

No Permutation Invariance, but Data Augmentation

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes. Data was augmented using
10 random permutation for each training dataset.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;

@ No Permutation Invariant Component: Ext = Identity

o Fully connected NN with dense 3-layers and 120 internal units.

S] -

X
% reria " =
k i

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
000000

Numerical Results

Readout Mapping Approach

Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: coefficients of linear
expansion

1 n n
PX)= - (X=x)"=X"+ 3" a X"k
k=1 k=1

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
000000

Numerical Results

Readout Mapping Approach

Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: coefficients of linear
expansion

1 n n
PX)= - (X=x)"=X"+ 3" a X"k
k=1 k=1

For d > 1, consider the quadratic d-variate polynomial:

Pz, Zs) = I (& =@+ + (Zg = xu(d))?)
k=1
2n
= > pend 2y
P1;---sPd=0
Encoding complexity:

Radu Balan (UMD)

Rep and Opt 04/02/2019

Permutation Invariant Representations
0o000e

Numerical Results

Algebraic Embedding

Encoding using Complex Roots

Idea: Consider the case d = 2. Then each xi, - -, x, € R? can be replaced

by n complex numbers z;,- -+, z, € C, zx = xx(1) + ixx(2). Then consider
the complex polynomial:

n

Q(z) = H(z —z)=2"+ Z oz k

k=1 k=1

which requires n complex numbers, or 2n real numbers.

Radu Balan (UMD) Rep and Opt 04/02/2019

Permutation Invariant Representations
0o000e

Numerical Results

Algebraic Embedding

Encoding using Complex Roots

Idea: Consider the case d = 2. Then each xi, - -, x, € R? can be replaced
by n complex numbers z;,- -+, z, € C, zx = xx(1) + ixx(2). Then consider
the complex polynomial:

n

Q(z) = H(z —z)=2"+ Z oz k

k=1 k=1

which requires n complex numbers, or 2n real numbers.
For d > 3 encode each combination of two columns of X € R"<? : Total
of d(d — 1)/2 combinations, each using 2n real numbers.

Encoding complexity: m = nd(d — 1)

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
€000000

Constructions

Combinatorial Optimization Problems
Approach

Consider the class of combinatorial problems,
maximize J(I; Input)
subject to:

MNes,

where Input stands for a given set input data, and S, denotes the
symmetric group of permutation matrices.
We analyze two specific objective functions:
@ Linear Assignment, J(I; C) = trace(NCT)
© Quadratic Assignment, J(T; A, B) = trace(NMAN' B)
Idea: Use a two-step procedure:
© Perform a latent representation of the Input Data using a Graph
Convolutive Network;
@ Apply a direct algorithm (e.g., a greedy-type algorithm) or solve a
convex optimization problem to obtain an estimate of the optimal T,
Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0®00000

Constructions

The Linear Assignment Problem

Consider a N x R cost/reward matrix C = (G j)i<i<n,1<j<r of
non-negative entries associated to edge connections between two sets of
nodes, {x1, -+, xn} and {y1,---,yr} with N > R. The problem is to find
the minimum cost/maximum reward matching/assignment, namely:

minimize / maximize SN le 71 jCij = trace(NCT)
subject to:
Tij € {0, 1} , Vi, j
SN mj=1,V1<j<R
SR my <1, VI<i<N

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000
Constructions

Quadratic Assignment Problem

Consider two symmetric (and positive semidefinite) matrices A, B € R™".
The quadratic assignment problem asks for the solution of

maximize trace(NAMT B)
subject to:

MNes,
In turns this is equivalent to the minimization problem:

minimize ||NA — BIM||%
subject to:
MNes,

In the case A, B are graph Laplacian, an efficient solution to this

optimization problem would solve the millenium problem of whether two
graphs are isomorphic.
Radu Balan (UMD)

Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000

Constructions

Novel Approach: Optimization in a Latent Representation
Domain

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

1% A
Input Data Tf
-

The nonlinear representation map & : Input Data +— Y is implemented
using a GCN.

The Optimization map V : Y +— @ can be implemented using a specific
nonlinear map (e.g., greedy algorithm, or turning into stochastic matrix) or
by solving a convex optimization problem.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000

Constructions

Graph Convolutive Networks (GCN)

Kipf and Welling introduced a network structure that performs local
processing according to a modified adjacency matrix:

A
—_—
" . ’ Y
g |B=o@xwi+By) (Y =0(AViW,+B,) | .| Vi =a(AY, W, +B) —>
—_—

Here A = [+ A, where A is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (Wy, By, Wa, By, -+, Wy, By).
As activation map o we choose the ReLU (Rectified Linear Unit).

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000
Constructions

Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight
: | 0 C . N ERZAN)
matrix A = [cT o] and data matrix X = [WCTG)) |

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000
Constructions

Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight

matrix A = [(.E)T g] and data matrix X = [VV((CC-’—(&,);)]

Key observation: When C = uv', that is, when the cost matrix is rank
one then:

© Objective Function: J(M; C) = u"Nv = (Mv, u)

1
P
Consequence: the "greedy” algorithm produces the optimal solution.

@ GCN output when no bias (B; =0): [= [r] satisfies 1] = aC.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000

Constructions

Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight

matrix A = [(.E)T g] and data matrix X = [VV((CC-’—(&,);)]

Key observation: When C = uv', that is, when the cost matrix is rank
one then:

© Objective Function: J(M; C) = u"Nv = (Mv, u)
@ GCN output when no bias (B; =0): [= [Fl] satisfies 1] = aC.
2
Consequence: the "greedy” algorithm produces the optimal solution.

Network Objective: Once trained, the GCN produces a latent
representation Z = r1r2T close to the input cost matrix C so that the
greedy algorithm applied on Z produces the optimal solution.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning

000000@
Constructions

Quadratic Assignment Problem using GCN

Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

. B 0 AB) A
matrix A = [BA 0] and data matrix X = l B

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
000000@
Constructions

Quadratic Assignment Problem using GCN

Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

matrix A = [0 AB

. A
BA 0]anddatamatnxx—[B].

Key observation: When A = vu’ and B = w T, that is, when the matrices
are rank one then:
@ Objective function: J(M; A, B) = (u"Nv)? = ((Nv, u))?

. r -
@ GCN output when no bias ((B; =0): ' = l Fl satisfies
2
My ~uv’.
Consequence: the "greedy” algorithm or the solution to the linear
assignment problem associated to uv’ produces the optimal solution.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
000000@
Constructions

Quadratic Assignment Problem using GCN

Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

. B 0 AB . A
matrle—[BA 0]anddatamatrlxX—lB].

Key observation: When A = vu’ and B = w T, that is, when the matrices
are rank one then:

@ Objective function: J(M; A, B) = (u"Nv)? = ((Nv, u))?

@ GCN output when no bias ((B; =0): ' = l r satisfies

1
>
;

My ~uv’.
Consequence: the "greedy” algorithm or the solution to the linear
assignment problem associated to uv’ produces the optimal solution.
Network Objective: Once trained, the GCN produces a latent
representation Z = rlrzT so that the linear assignment problem associated
to Z produces the same optimal permutation.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning

©0000
DNN as UA

Deep Neural Networks as Universal Approximators

minimize/ maximize SN, E
subject to:
i j S {0,1} R \V/I',j
SN mj=1,V1<j<R
SRy my <1, VI<i<N

1 7ijC

Luckily, the convex relaxation (Linear Program) produces the same
optimal solution:

minimize le'vzl JR:1 mijCij
subject to:
0<m;<1,Vij
SN mj=1,V1<j<R
SR <1, V1<i<N
Radu Balan (UMD)

Rep and Opt 04/02/2019

Optimizations using Deep Learning
0®000

DNN as UA

Deep Neural Networks as Universal Approximators

Architectures

The overall system must output feasible solutions 7. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate 7; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate 7:

\m

DNN

Issues:
© DNN architecture: how many layers; how many neurons per layer?
@ P, the feasibility enforcer

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000

DNN as UA

Deep Neural Networks as Universal Approximators
DNNs

We studied three architectures:

c11 C1R TR
o g
- EL (iomod—+ = nZ afoomo}——+ mmmmmnns &) =
Cn1 CNR i TnR
Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000

DNN as UA

Deep Neural Networks as Universal Approximators
Feasibility Enforcer P

An "optimal” feasibility condition enforcer would minimize some
"distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.

Instead we opt for a simpler and "greedier” approach:

Repeat R times: ﬁ:E'.Zss =¥ ’A’:E"Z;
&5 1 2
1. Find (/,j) the largest entry in T

2. Set @jj = 1; set to O other entries /

in row i and column j;
3. Remove row i and column j from =2
both 7 and 7.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000®
DNN as UA

Deep Neural Networks as Universal Approximators
Baseline solution: The Greedy Algorithm

The "greedy” enforcer can be modified into a "greedy” optimization
algorithm:

© Initialize E = C and @ = Opnxr
© Repeat R times:
o Find (i,j) = argming, p)Ea b;

o Setﬁ',-J:l, ﬁ',‘JZOVI#j, 7AT'/7J'ZOV/7£I.;
o Set E;. =00, E j = o0.

Proposition

The greedy algorithm produces the optimal solution if there is a positive

number A > 0 and two nonnegative vectors u, v such that
C=A1-1T —y.v'.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
©000000000000000000000000

Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

First architecture:

e C1r
C <
N1 Cnr

Number of internal layers: 9

Number of hidden units per layer: 250

Batch size: 200; ADAM optimizer

Loss function: cross-entropy:

> i mij(—log(#ij)) + (L — mi;)(—log(l — #i;))

Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0®00000000000000000000000

Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

Cross Entropy over Training

» training * validation

CROSS ENTROPY ERROR (LOG SCALE)

04/02/2019

Radu Balan (UMD) Rep and Opt

Optimizations using Deep Learning
00®0000000000000000000000

Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

MSE over training

» training * validation

MSE (LOG SCALE)

04/02/2019

Radu Balan (UMD) Rep and Opt

Optimizations using Deep Learning
000@000000000000000000000

Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

Avg Obj Value Diff (Predicted - True)

» training * validation

OBJ VAL DIFF

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000@00000000000000000000

Numerical Results

Exp.1: N =5, R =4 with ReLU activation

UNIVE&SIT‘I OF
A 1R

AND

Validation Set Instance #1 alidation Set Instance #1

=Prediction True Solution =Feasible Prediction True Solution

78 9101 121314151617 18 19 20
DECISION VARIABLES (FLATTENED)

567 8 91011 1213141516 17181920
DECISION VARIABLES (FLATTENED)

DECISION VARIABLE

Validation Set Instance #1

#Greedy Prediction = True Solution

6789 1011211415181
DECISION VARIABLES (FLATTENED)

10

adu Balan Rep and Opt

Optimizations using Deep Learning
00000@0000000000000000000

Numerical Results

Exp.1: N =5, R =4 with ReLU activation

fﬁl UNIVERSITY OF
MAR) \

YLAND

Validation Set Instance #2 Validation Set Instance #2

wPrediction # True Solution =Feasible Prediction = Trus Solution

567 80 10NNDBUISIENILLN

6 78 91011 213 141516171819 20
DECISION VARIABLES (FLATTENED) 5 \ED)

Validation Set Instance #2

#GreedyPrediction = Trve Solution

6 7 8 9 1011 121314151617 18 1920

DECISION VARIABLES (FLATTENED)

adu Balan Rep and Opt

Optimizations using Deep Learning
000000@000000000000000000

Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Second architecture:

@ Number of internal layers: 10
@ Number of hidden units per layer: 250
@ No Batch; ADAM optimizer
@ Loss function: cross-entropy:
> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
@ Training data set: 1 million random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000@00000000000000000

Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Cross Entropy

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000080000000000000000

Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

MSE over training

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000008000000000000000

Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000000800000000000000

Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Iﬁ' UNIVERSITY OF
MARYLAN

AND
Validation Set Instance #1 Validation Set Instance #1

wPrediction #True Solution # Feasible Prediction = True Solution

0
1 4 710131619222528 3134 37 4043 46 4 8616467 9 £ 14 71013161922252831 343740 4346 49 61646770
JONVARIABLES (FLATTENED) DECISION VARIABLES (FLATTENED)

lidation Set Instance #1

= GresdyPrediction = True Solution

0
14710 13161922252831 3437 40 43 4649 5:
DECISION VARIABLES (FLATTENED)

adu Balan Rep and Opt

Optimizations using Deep Learning
0000000000080000000000000

Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

i UNIVERSITY OF

Y LAND

Validation Set Instance #2

#Feasible Prediction = True Solution

Validation Set Instance #2

=Prsgiction = True Solution

-BR288.

14710131619 3134374043 4649 61 6467707376 79
NVARIABLES (FLATTENED)

14710131619 313437404346 495255 5
DECISION VARIABLES (FLATTENED)

DECISIONVARIABLE

Validation Set Instance #2

= Greedy Prediction = True Solution

0
147101316192
DEC

adu Balan

Rep and Opt

Optimizations using Deep Learning
0000000000008000000000000

Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

Second architecture:

o Yoyeq
n1un uappny
o e

un uppry
LIOU 1Y
D
1}

@ Number of internal layers: 10
@ Number of hidden units per layer: 250
@ Batch size 200; ADAM optimizer
@ Loss function: cross-entropy:
i Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
@ Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000000000e00000000000

Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

Cross Entropy

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000000000080000000000

Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

MSE over training

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000000000008000000000

Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

Avg Obj Value Diff (Predicted - True)

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000000000000800000000

Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

5 UNIVERSITY OF
5 RIARYLAND

Validation Set Instance Validation Set Instance #1

wPrediction wTrue Solution #Feasible Prediction # True Salution
89 1010 2131415161718 1920 g 3 6 7 8 9 1011121314 15161718 19 20
N VARIABLES (FLATTENED) DECISION VARIABLES (FLATTENED)

Validation Set Instance #1

=GreedyPrediction = True Solution

ARIABLE VALUE

678 91011 2131415161718 1920
DECISION VARIABLES (FLATTENED)

DECISION

28

adu Balan Rep and Opt

Optimizations using Deep Learning
0000000000000000080000000

Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

ITY OF

AND
alidation Set Instance #2 Validation Set Instance #2

Prediction = Tiue Solution = Feasible Prediction = Trus Solution
W Mw

78 91011 121314151617 18 1920 £ 4567891001213 KISI617181920
DECISION VARIABLES (FLATTENED) : DECISION VARIABLES (FLATTENED)

DECISIONVARIABLE VALUE

Validation Set Instance #2

" Greedy Prediction = Trve Solufion

6789 101 1R114I5SI6171819
DECISION VARIABLES (FLATTENED)

29

adu Balan Rep and Opt

Optimizations using Deep Learning
0000000000000000008000000

Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

Second architecture:

o Yoyeq
n1un uappny
o e

un uppry
LIOU 1Y
D
1}

@ Number of internal layers: 10
@ Number of hidden units per layer: 300
@ Batch size 200; ADAM optimizer
@ Loss function: cross-entropy:
i Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
@ Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000000000000000800000

Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

Cross Entropy

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
00000000000000000000e80000

Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

MSE over training

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
000000000000000000000e000

Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)

Radu Balan (UMD) Rep and Opt 04/02/2019

Optimizations using Deep Learning
0000000000000000000000e800

Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

ITY OF

AND

Validation Set Instance #1 lidation Set Instance #1

Prediction = True Sofution #Feasible Prediction = True Solution

0
1471013161922 25283134 374043 46 & 6164677073767 i 8616467 7
DECISION VARIABLES (FLATTENED) ARIABLES (FLATTENED)

Validation Set Instance #1

GreedyPrediction = True Sofution

0
14 7101316192225 2831 3437 4043 46495
DECISION VARIABLES (FLATTENED)

adu Balan Rep and Opt

Optimizations using Deep Learning
00000000000000000000000e

Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

S UN vs&sr‘rv OF

YLAND

Validation Set Instance #2

wFeasible Prediction = True Solufion

Validation Set Instance #2

Prediction = True Solution

147101316192
DECISIONVARIABLES (FL.

14 7101316192225 2831 34 37 4043 4649 52 55 538 6164 6
DECISION VARIARLES (FLATTENED)

Validation Set Instance

wGreedy Prediction = Trus Solution

14 71013161922252831343740 434649 52 55
DECISION VARIABLES (FLATTENED)

Optimizations using Deep Learning
000000000000000000000000e

Bibliography

1. M. Andrychowicz, M. Denil, S.G. Colmenarejo, M.W. Hoffman, D.
Pfau, T. Schaul, B. Shillingford, N.de Freitas, Learning to learn by
gradient descent by gradient descent, arXiv:1606.04474v2 [cs.NE]

2. T.N. Kipf, M. Welling, Variational Graph Auto-Encoder,
arXiv:1611.07308 [stat.ML]

3. A. Nowak, S. Villar, A. Bandeira, J. Bruna, Revised Note on Learning
Quadratic Assignment with Graph Neural Network, arXiv: 1706.07450
[stat.ML]

Radu Balan (UMD) Rep and Opt 04/02/2019

	Permutation Invariant Representations
	Theory
	Numerical Results

	Optimizations using Deep Learning
	Constructions
	DNN as UA
	Numerical Results

