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Permutation Invariant Representations Optimizations using Deep Learning

Theory

Permutation Invariant induced Representations
Consider the equivalence relation ∼ on Rn×d indiced by the group of
permutation Sn: for any X ,X ′ ∈ Rn×d ,

X ∼ X ′ ⇔ X ′ = PX , for some P ∈ Sn

Let M = Rn×d/ ∼ be the quotient space endowed with the natural
distance induced by Frobenius norm ‖ · ‖F

d(X̂1, X̂2) = min
P∈Sn

‖X1 − PX2‖F , X̂1, X̂2 ∈M.

The Problem: Construct a Lipschitz embedding α̂ : M→ Rm, i.e., an
integer m = m(n, d), a map α : Rn×d → Rm and a constant L = L(α) > 0
so that for any X ,X ′ ∈ Rn×d ,

1 If X ∼ X ′ then α(X ) = α(X ′)
2 If α(X ) = α(X ′) then X ∼ X ′
3 ‖α(X )− α(X ′)‖2 ≤ L d(X̂ , X̂ ′)
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Theory

Motivation (1)
Graph Learning Problems

Consider data graphs such as: social networks, transportation networks,
citation networks, chemical networks, protein networks, biological
networks, etc. Each such network is modeled as a (weighted) graph
(V, E ,A) of n nodes, and a set of feature vectors {xT

1 , · · · , xT
n } ⊂ Rd that

form the matrix X =

 xT
1
...

xT
n

 ∈ Rn×d .

Two important problems involving a map f : (A,X )→ f (A,X ):
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

In each case we expect the task to be invariant to vertices permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Theory

Motivation (2)
Graph Convolutive Networks (GCN)

Kipf and Welling (’16) introduced a network structure that performs local
processing according to a modified adjacency matrix:

Ã = D−1/2(I + A)D−1/2, where A is the adjacency matrix, or the graph
weight matrix, D is the diagonal with vertex degrees; σ is the activation
map. An L-layer GCN has parameters (W1,B1, · · · ,WL,BL).

Assume Bi = PBi . Note the covariance property: for any P ∈ Sn,
(A,X ) 7→ (PAPT ,PX ) and Y 7→ PY .

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Theory

Motivation (2)
Graph Convolutive Networks (GCN)

Kipf and Welling (’16) introduced a network structure that performs local
processing according to a modified adjacency matrix:
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Theory

Motivation (3)
Deep Learning with GCN

The two learning tasks (classification or regression) can be solved by the
following scheme:

where Ext is a permutation invariant feature EXTractor, and SVM/NN is
a single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network).
The purpose of this (part of the) talk is to analyze the Ext component.
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Theory

Motivation (4)
Enzyme Classification Example

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
No Permutation Invariant Component: Ext = Identity
Fully connected NN with dense 3-layers and 120 internal units.
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Theory

The Measure Theoretic Embedding

First approach: Consider the map

µ : M→ P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure.
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.

Main drawback: P(Rd ) is infinite dimensional!
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Theory

Finite Dimensional Embeddings
Architectures

Two classes of extractors:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Sum pooling:
σ : Rn → Rn , σ(x) = (yk)n

k=1 , yk =
n∑

j=1
ν(ak , xj)

where kernel ν : R× R→ R, e.g. ν(a, t) = e−(a−t)2 , or ν(a = k, t) = tk .
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Theory

Pooling Mapping Approach

Fix a matrix R ∈ Rd×D. Consider the map:

Λ : Rn×d → Rn×D ≡ RnD , Λ(X ) = λ(XR)

where λ acts columnwise (reorders monotonically decreasing each
column). Since Λ(ΠX ) = Λ(X ), then Λ : R̂n×d → Rn×D.

Theorem
For any matrix R ∈ Rd×(d+1) so that any d × d submatrix is invertible,
there is a subset Z ⊂ R̂n×d of zero measure so that
Λ : R̂n×d \ Z → Rn×(d+1) is faithful (i.e., injective).

No known tight bound yet as to the minimum D = D(n, d) so that there
is a matrix R so that Λ is faithful (injective).
However, due to local linearity, if Λ is faithful (injective), then it is stable.
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Numerical Results

Enzyme Classification Example
Extraction with the Hadamard Matrix

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
Ext = Λ, Z = λ(YR) with R = [I Hadamard ]. D = 50, m = 50.
Fully connected NN with dense 3-layers and 120 internal units.
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Numerical Results

Readout Mapping Approach
Kernel Sampling

Consider:

Φ : Rn×d → Rm , (Φ(X ))j =
n∑

k=1
ν(aj , xk) or (Φ(X ))j =

n∏
k=1

ν(aj , xk)

where ν : Rd × Rd → R is a kernel, and x1, · · · , xn denote the rows of
matrix X .
Known solutions: If m =∞, then there exists a Φ that is globally faithful
(injective) and stable on compacts.
Interesting mathematical connexion: On compacts, some kernels ν define
Repreducing Kernel Hilberts Spaces (RKHSs) and yield a decomposition

(Φ(X ))j =
∑
p≥1

σpfp(aj)gp(X )
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Numerical Results

Enzyme Classification Example
Feature Extraction with Exponential Kernel Sampling

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
Ext : Zj =

∑n
k=1 exp(−π‖yk − zj‖) with m = 120 and zj random.

Fully connected NN with dense 3-layers and 120 internal units.
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Numerical Results

Enzyme Classification Example
No Permutation Invariance, but Data Augmentation

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes. Data was augmented using
10 random permutation for each training dataset.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
No Permutation Invariant Component: Ext = Identity
Fully connected NN with dense 3-layers and 120 internal units.
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Numerical Results

Readout Mapping Approach
Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: coefficients of linear
expansion

P(X ) = 1
n

n∑
k=1

(X − xk)n = Xn +
n∑

k=1
akXn−k

For d > 1, consider the quadratic d-variate polynomial:

P(Z1, · · · ,Zd ) =
n∏

k=1

(
(Z1 − xk(1))2 + · · ·+ (Zd − xk(d))2

)

=
2n∑

p1,...,pd =0
ap1,...,pd Zp1

1 · · ·Z
pd
d

Encoding complexity:

m = O
(

2n + d
d

)
∼ (2n)d .
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Numerical Results

Algebraic Embedding
Encoding using Complex Roots

Idea: Consider the case d = 2. Then each x1, · · · , xn ∈ R2 can be replaced
by n complex numbers z1, · · · , zn ∈ C, zk = xk(1) + ixk(2). Then consider
the complex polynomial:

Q(z) =
n∏

k=1
(z − zk) = zn +

n∑
k=1

σkzn−k

which requires n complex numbers, or 2n real numbers.

For d > 3 encode each combination of two columns of X ∈ Rn×d : Total
of d(d − 1)/2 combinations, each using 2n real numbers.

Encoding complexity: m = nd(d − 1)
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Constructions

Combinatorial Optimization Problems
Approach

Consider the class of combinatorial problems,
maximize J(Π; Input)
subject to:

Π ∈ Sn

where Input stands for a given set input data, and Sn denotes the
symmetric group of permutation matrices.
We analyze two specific objective functions:

1 Linear Assignment, J(Π; C) = trace(ΠCT )
2 Quadratic Assignment, J(Π; A,B) = trace(ΠAΠT B)

Idea: Use a two-step procedure:
1 Perform a latent representation of the Input Data using a Graph

Convolutive Network;
2 Apply a direct algorithm (e.g., a greedy-type algorithm) or solve a

convex optimization problem to obtain an estimate of the optimal Π.
Radu Balan (UMD) Rep and Opt 04/02/2019
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Constructions

The Linear Assignment Problem
Consider a N × R cost/reward matrix C = (Ci ,j)1≤i≤N,1≤j≤R of
non-negative entries associated to edge connections between two sets of
nodes, {x1, · · · , xN} and {y1, · · · , yR} with N ≥ R. The problem is to find
the minimum cost/maximum reward matching/assignment, namely:

minimize/maximize
∑N

i=1
∑R

j=1 πi ,jCi ,j = trace(ΠC̃T )
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N
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Constructions

Quadratic Assignment Problem

Consider two symmetric (and positive semidefinite) matrices A,B ∈ Rn×n.
The quadratic assignment problem asks for the solution of

maximize trace(ΠAΠT B)
subject to:

Π ∈ Sn

In turns this is equivalent to the minimization problem:

minimize ‖ΠA− BΠ‖2F
subject to:

Π ∈ Sn

In the case A,B are graph Laplacian, an efficient solution to this
optimization problem would solve the millenium problem of whether two
graphs are isomorphic.
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Constructions

Novel Approach: Optimization in a Latent Representation
Domain

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map Φ : Input Data 7→ Y is implemented
using a GCN.
The Optimization map Ψ : Y 7→ π̂ can be implemented using a specific
nonlinear map (e.g., greedy algorithm, or turning into stochastic matrix) or
by solving a convex optimization problem.
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Constructions

Graph Convolutive Networks (GCN)

Kipf and Welling introduced a network structure that performs local
processing according to a modified adjacency matrix:

Here Ã = I + A, where A is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (W1,B1,W2,B2, · · · ,WL,BL).
As activation map σ we choose the ReLU (Rectified Linear Unit).
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Constructions

Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight

matrix A =
[

0 C
CT 0

]
and data matrix X =

[
ν(C(i , :))
ν(CT (j , :))

]
.

Key observation: When C = uvT , that is, when the cost matrix is rank
one then:

1 Objective Function: J(Π; C) = uT Πv = 〈Πv , u〉

2 GCN output when no bias (Bj = 0): Γ =
[

Γ1
Γ2

]
satisfies Γ1ΓT

2 = αC .

Consequence: the ”greedy” algorithm produces the optimal solution.

Network Objective: Once trained, the GCN produces a latent
representation Z = Γ1ΓT

2 close to the input cost matrix C so that the
greedy algorithm applied on Z produces the optimal solution.
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Constructions

Quadratic Assignment Problem using GCN
Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

matrix A =
[

0 AB
BA 0

]
and data matrix X =

[
A
B

]
.

Key observation: When A = uuT and B = vvT , that is, when the matrices
are rank one then:

1 Objective function: J(Π; A,B) = (uT Πv)2 = (〈Πv , u〉)2

2 GCN output when no bias ((Bj = 0): Γ =
[

Γ1
Γ2

]
satisfies

Γ1ΓT
2 ∼ uvT .

Consequence: the ”greedy” algorithm or the solution to the linear
assignment problem associated to uvT produces the optimal solution.
Network Objective: Once trained, the GCN produces a latent
representation Z = Γ1ΓT

2 so that the linear assignment problem associated
to Z produces the same optimal permutation.
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DNN as UA

Deep Neural Networks as Universal Approximators

minimize/maximize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Luckily, the convex relaxation (Linear Program) produces the same
optimal solution:

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

0 ≤ πi ,j ≤ 1 , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

DNN as UA

Deep Neural Networks as Universal Approximators
Architectures

The overall system must output feasible solutions π̂. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate π̄; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate π̂:

Issues:
1 DNN architecture: how many layers; how many neurons per layer?
2 P, the feasibility enforcer
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DNN as UA

Deep Neural Networks as Universal Approximators
DNNs

We studied three architectures:
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DNN as UA

Deep Neural Networks as Universal Approximators
Feasibility Enforcer P

An ”optimal” feasibility condition enforcer would minimize some
”distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.
Instead we opt for a simpler and ”greedier” approach:

Repeat R times:
1. Find (i , j) the largest entry in π̄
2. Set π̂i ,j = 1; set to 0 other entries
in row i and column j ;
3. Remove row i and column j from
both π̄ and π̂.
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DNN as UA

Deep Neural Networks as Universal Approximators
Baseline solution: The Greedy Algorithm

The ”greedy” enforcer can be modified into a ”greedy” optimization
algorithm:

1 Initialize E = C and π̂ = 0N×R
2 Repeat R times:

Find (i , j) = argmin(a,b)Ea,b;
Set π̂i,j = 1, π̂i,l = 0 ∀l 6= j , π̂l,j = 0 ∀l 6= i ;
Set Ei,: =∞, E:,j =∞.

Proposition

The greedy algorithm produces the optimal solution if there is a positive
number λ > 0 and two nonnegative vectors u, v such that
C = λ1 · 1T − u · vT .
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Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation
First architecture:

Number of internal layers: 9
Number of hidden units per layer: 250
Batch size: 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.1 : N = 5, R = 4 with ReLU activation
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Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
No Batch; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
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Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 300
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation
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