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Permutation Invariant Representations
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Theory

Permutation Invariant induced Representations

Consider the equivalence relation ~ on R"*9 indiced by the group of
permutation S,: for any X, X’ € R"™*9,

X~X & X =PX, forsome Pc€S,

Let M = R"*9/ ~ be the quotient space endowed with the natural

distance induced by Frobenius norm || - ||
d(Xl,XQ) = 'gélg HXI — PXQHF R 5\(1,5(2 € M.
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Theory

Permutation Invariant induced Representations

Consider the equivalence relation ~ on R"*9 indiced by the group of
permutation S,: for any X, X’ € R"™*9,

X~X & X =PX, forsome Pc€S,

Let M = R"*9/ ~ be the quotient space endowed with the natural

distance induced by Frobenius norm || - ||
d(Xl,XQ) = 'gélg HXI — PXQHF R 5\(1,5(2 € M.

The Problem: Construct a Lipschitz embedding & : M — R, i.e., an
integer m = m(n, d), a map o : R™9 — R™ and a constant L = L(a) >0
so that for any X, X’ € R"™*9,

Q If X ~ X' then o(X) = a(X')

Q If a(X) = a(X') then X ~ X’

@ [a(X) - a(X)[2 < Ld(X,X)
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Theory

Motivation (1)
Graph Learning Problems

Consider data graphs such as: social networks, transportation networks,
citation networks, chemical networks, protein networks, biological
networks, etc. Each such network is modeled as a (weighted) graph
(V, €, A) of n nodes, and a set of feature vectors {x;",---,x] } C RY that
x{
form the matrix X = : c R™9,
Xy
Two important problems involving a map 1 : (A, X) — f(A, X):
Q classification: f(A,X) € {1,2,---,c}
@ regression/prediction: f(A, X) € R.
In each case we expect the task to be invariant to vertices permutation:
f(PAPT PX) = f(A, X), for every P € S,.
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Theory

Motivation (2)
Graph Convolutive Networks (GCN)

Kipf and Welling ('16) introduced a network structure that performs local
processing according to a modified adjacency matrix:

A
—_—
. . - Y
v |h=o(dXxWi+B) [ L=c(AW, +By) | . | =c(AY, W, +By) [—>
—_—

A= D"Y2(] + A)D~1/2, where A is the adjacency matrix, or the graph
weight matrix, D is the diagonal with vertex degrees; o is the activation
map. An L-layer GCN has parameters (W4, By, ---, W, By).
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Theory

Motivation (2)
Graph Convolutive Networks (GCN)

Kipf and Welling ('16) introduced a network structure that performs local
processing according to a modified adjacency matrix:

A
—_—
. . - Y
v |h=o(dXxWi+B) [ L=c(AW, +By) | . | =c(AY, W, +By) [—>
—_—

A= D"Y2(] + A)D~1/2, where A is the adjacency matrix, or the graph
weight matrix, D is the diagonal with vertex degrees; o is the activation
map. An L-layer GCN has parameters (W4, By, ---, W, By).

Assume B; = PB;. Note the covariance property. for any P € S,,
(A, X) — (PAPT,PX) and Y + PY.
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Theory

Motivation (3)
Deep Learning with GCN

The two learning tasks (classification or regression) can be solved by the
following scheme:

GCN

1 SVM/NN

where Ext is a permutation invariant feature EXTractor, and SVM/NN is

a single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network).

The purpose of this (part of the) talk is to analyze the Ext component.
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Theory

Motivation (4)

Enzyme Classification Example

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;

@ No Permutation Invariant Component: Ext = Identity

o Fully connected NN with dense 3-layers and 120 internal units.
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Theory

The Measure Theoretic Embedding

First approach: Consider the map

n

b Mo PRY) L p(X)(6) = 3 ax — x)
k=1

where P(RY) denotes the convex set of probability measures over R9, and

6 denotes the Dirac measure.
Clearly u(X’) = u(X) iff X’ = PX for some P € S,,.

Main drawback: P(R9) is infinite dimensional!
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Theory

Finite Dimensional Embeddings

Architectures

Two classes of extractors:
@ Pooling Map — based on Max pooling
@ Readout Map — based on Sum pooling

Radu Balan (UMD) Rep and Opt 04/02/2019
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Theory

Finite Dimensional Embeddings

Architectures

Two classes of extractors:
@ Pooling Map — based on Max pooling
@ Readout Map — based on Sum pooling

Intuition in the case d = 1:
Max pooling:

AR5 R 0 AX) = (Xe(k)) k=1 5 Xn(1) = Xn(2) = 7 2> Xn(n)
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Theory

Finite Dimensional Embeddings

Architectures

Two classes of extractors:
@ Pooling Map — based on Max pooling
@ Readout Map — based on Sum pooling
Intuition in the case d = 1:
Max pooling:
AR R >‘(X) = (Xﬂ(k))kzl » Xr(1) > Xr(2) > 2 Xr(n)

Sum pooling:

o R =R, o(x) = (vk)ket » vk = > v(ak X))
j=1

where kernel v : R x R — R, e.g. v(a, t) = e (a8 or v(a = k, t) = tk.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Theory

Pooling Mapping Approach

Fix a matrix R € R9*P_ Consider the map:
A:R™4 5 RP =R™ | A(X) = MXR)

where A acts columnwise (reorders monotonically decreasing each
column). Since A(MX) = A(X), then A : Rnxd — RMxD,

Theorem

For any matrix R € R9*(d+1) so that any d x d submatrix is invertible,

—

there is a subset Z C R"*9 of zero measure so that
A Rrxd\ 7 — R+ s fajthful (ie., injective).

No known tight bound yet as to the minimum D = D(n, d) so that there
is a matrix R so that A is faithful (injective).
However, due to local linearity, if A is faithful (injective), then it is stable.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Enzyme Classification Example
Extraction with the Hadamard Matrix

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;
o Ext =N, Z=X(YR) with R = [/ Hadamard]. D =50, m = 50.
o Fully connected NN with dense 3-layers and 120 internal units.

R
B R R
I e

.
o
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Numerical Results

Readout Mapping Approach

Kernel Sampling

Consider:
n n
¢ :R™ S R™ | (P(X)); = Z v(aj, xx) or (®(X)); = H v(aj, xx)
k=1 k=1
where v : R? x R? — R is a kernel, and xq, - - -, x,, denote the rows of
matrix X.

Known solutions: If m = oo, then there exists a ® that is globally faithful
(injective) and stable on compacts.

Interesting mathematical connexion: On compacts, some kernels v define
Repreducing Kernel Hilberts Spaces (RKHSs) and yield a decomposition

(P(X) J_ZUP (aj)gn(X)
p=1

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Enzyme Classification Example

Feature Extraction with Exponential Kernel Sampling

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;

e Ext: Zj=3%]_;exp(—l|lyx — zj|) with m = 120 and z; random.
o Fully connected NN with dense 3-layers and 120 internal units.
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Numerical Results

Enzyme Classification Example

No Permutation Invariance, but Data Augmentation

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes. Data was augmented using
10 random permutation for each training dataset.
Architecture (ReLU activation):

@ GCN with L = 3 layers and d = 25 feature vectors in each layer;

@ No Permutation Invariant Component: Ext = Identity

o Fully connected NN with dense 3-layers and 120 internal units.

S ] -

X
% reria " =
k i
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Numerical Results

Readout Mapping Approach

Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: coefficients of linear
expansion

1 n n
PX)= - (X=x)"=X"+ 3" a X"k
k=1 k=1

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Readout Mapping Approach

Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: coefficients of linear
expansion

1 n n
PX)= - (X=x)"=X"+ 3" a X"k
k=1 k=1

For d > 1, consider the quadratic d-variate polynomial:

Pz, Zs) = I (& =@+ + (Zg = xu(d))?)
k=1
2n
= > pend 2y
P1;---sPd=0
Encoding complexity:

Radu Balan (UMD)

Rep and Opt 04/02/2019
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Numerical Results

Algebraic Embedding

Encoding using Complex Roots

Idea: Consider the case d = 2. Then each xi, - -, x, € R? can be replaced

by n complex numbers z;,- -+, z, € C, zx = xx(1) + ixx(2). Then consider
the complex polynomial:

n

Q(z) = H(z —z)=2"+ Z oz k

k=1 k=1

which requires n complex numbers, or 2n real numbers.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Algebraic Embedding

Encoding using Complex Roots

Idea: Consider the case d = 2. Then each xi, - -, x, € R? can be replaced
by n complex numbers z;,- -+, z, € C, zx = xx(1) + ixx(2). Then consider
the complex polynomial:

n

Q(z) = H(z —z)=2"+ Z oz k

k=1 k=1

which requires n complex numbers, or 2n real numbers.
For d > 3 encode each combination of two columns of X € R"<? : Total
of d(d — 1)/2 combinations, each using 2n real numbers.

Encoding complexity: m = nd(d — 1)
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Constructions

Combinatorial Optimization Problems
Approach

Consider the class of combinatorial problems,
maximize  J(I; Input)
subject to:

MNes,

where Input stands for a given set input data, and S, denotes the
symmetric group of permutation matrices.
We analyze two specific objective functions:
@ Linear Assignment, J(I; C) = trace(NCT)
© Quadratic Assignment, J(T; A, B) = trace(NMAN' B)
Idea: Use a two-step procedure:
© Perform a latent representation of the Input Data using a Graph
Convolutive Network;
@ Apply a direct algorithm (e.g., a greedy-type algorithm) or solve a
convex optimization problem to obtain an estimate of the optimal T,
Radu Balan (UMD) Rep and Opt 04/02/2019
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Constructions

The Linear Assignment Problem

Consider a N x R cost/reward matrix C = (G j)i<i<n,1<j<r of
non-negative entries associated to edge connections between two sets of
nodes, {x1, -+, xn} and {y1,---,yr} with N > R. The problem is to find
the minimum cost/maximum reward matching/assignment, namely:

minimize / maximize SN le 71 jCij = trace(NCT)
subject to:
Tij € {0, 1} , Vi, j
SN mj=1,V1<j<R
SR my <1, VI<i<N

Radu Balan (UMD) Rep and Opt 04/02/2019
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Quadratic Assignment Problem

Consider two symmetric (and positive semidefinite) matrices A, B € R™".
The quadratic assignment problem asks for the solution of

maximize  trace(NAMT B)
subject to:

MNes,
In turns this is equivalent to the minimization problem:

minimize  ||NA — BIM||%
subject to:
MNes,

In the case A, B are graph Laplacian, an efficient solution to this

optimization problem would solve the millenium problem of whether two
graphs are isomorphic.
Radu Balan (UMD)
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Constructions

Novel Approach: Optimization in a Latent Representation
Domain

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

1% A
Input Data Tf
-

The nonlinear representation map & : Input Data +— Y is implemented
using a GCN.

The Optimization map V : Y +— @ can be implemented using a specific
nonlinear map (e.g., greedy algorithm, or turning into stochastic matrix) or
by solving a convex optimization problem.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Constructions

Graph Convolutive Networks (GCN)

Kipf and Welling introduced a network structure that performs local
processing according to a modified adjacency matrix:

A
—_—
" . ’ Y
g |B=o@xwi+By) (Y =0(AViW,+B,) | .| Vi =a(AY, W, +B) —>
—_—

Here A = [+ A, where A is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (Wy, By, Wa, By, -+, Wy, By).
As activation map o we choose the ReLU (Rectified Linear Unit).

Radu Balan (UMD) Rep and Opt 04/02/2019
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Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight
: | 0 C . N ERZAN)
matrix A = [ cT o ] and data matrix X = [ WCTG)) |

Radu Balan (UMD) Rep and Opt 04/02/2019
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Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight

matrix A = [ (.E)T g ] and data matrix X = [ VV((CC-’—(&,);) ]

Key observation: When C = uv', that is, when the cost matrix is rank
one then:

© Objective Function: J(M; C) = u"Nv = (Mv, u)

1
P
Consequence: the "greedy” algorithm produces the optimal solution.

@ GCN output when no bias (B; =0): [ = [ r ] satisfies 1] = aC.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Constructions

Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight

matrix A = [ (.E)T g ] and data matrix X = [ VV((CC-’—(&,);) ]

Key observation: When C = uv', that is, when the cost matrix is rank
one then:

© Objective Function: J(M; C) = u"Nv = (Mv, u)
@ GCN output when no bias (B; =0): [ = [ Fl ] satisfies 1] = aC.
2
Consequence: the "greedy” algorithm produces the optimal solution.

Network Objective: Once trained, the GCN produces a latent
representation Z = r1r2T close to the input cost matrix C so that the
greedy algorithm applied on Z produces the optimal solution.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Quadratic Assignment Problem using GCN

Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

. B 0 AB ) A
matrix A = [ BA 0 ] and data matrix X = l B

Radu Balan (UMD) Rep and Opt 04/02/2019
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Quadratic Assignment Problem using GCN

Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

matrix A = [ 0 AB

. A
BA 0 ]anddatamatnxx—[B].

Key observation: When A = vu’ and B = w T, that is, when the matrices
are rank one then:
@ Objective function: J(M; A, B) = (u"Nv)? = ((Nv, u))?

. r -
@ GCN output when no bias ((B; =0): ' = l Fl satisfies
2
My ~uv’.
Consequence: the "greedy” algorithm or the solution to the linear
assignment problem associated to uv’ produces the optimal solution.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Quadratic Assignment Problem using GCN

Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

. B 0 AB . A
matrle—[BA 0 ]anddatamatrlxX—lB].

Key observation: When A = vu’ and B = w T, that is, when the matrices
are rank one then:

@ Objective function: J(M; A, B) = (u"Nv)? = ((Nv, u))?

@ GCN output when no bias ((B; =0): ' = l r satisfies

1
>
;

My ~uv’.
Consequence: the "greedy” algorithm or the solution to the linear
assignment problem associated to uv’ produces the optimal solution.
Network Objective: Once trained, the GCN produces a latent
representation Z = rlrzT so that the linear assignment problem associated
to Z produces the same optimal permutation.

Radu Balan (UMD) Rep and Opt 04/02/2019
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DNN as UA

Deep Neural Networks as Universal Approximators

minimize/ maximize SN, E
subject to:
i j S {0,1} R \V/I',j
SN mj=1,V1<j<R
SRy my <1, VI<i<N

1 7ijC

Luckily, the convex relaxation (Linear Program) produces the same
optimal solution:

minimize le'vzl JR:1 mijCij
subject to:
0<m;<1,Vij
SN mj=1,V1<j<R
SR <1, V1<i<N
Radu Balan (UMD)
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DNN as UA

Deep Neural Networks as Universal Approximators

Architectures

The overall system must output feasible solutions 7. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate 7; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate 7:

\m

DNN

Issues:
© DNN architecture: how many layers; how many neurons per layer?
@ P, the feasibility enforcer

Radu Balan (UMD) Rep and Opt 04/02/2019
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Deep Neural Networks as Universal Approximators
DNNs

We studied three architectures:

c11 C1R TR
o g
- EL (iomod—+ = nZ afoomo}——+  mmmmmnns & ) =
Cn1 CNR i TnR
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Deep Neural Networks as Universal Approximators
Feasibility Enforcer P

An "optimal” feasibility condition enforcer would minimize some
"distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.

Instead we opt for a simpler and "greedier” approach:

Repeat R times: ﬁ:E'.Zss =¥ ’A’:E"Z;
&5 1 2
1. Find (/,j) the largest entry in T

2. Set @jj = 1; set to O other entries /

in row i and column j;
3. Remove row i and column j from =2
both 7 and 7.

Radu Balan (UMD) Rep and Opt 04/02/2019



Optimizations using Deep Learning
0000®
DNN as UA

Deep Neural Networks as Universal Approximators
Baseline solution: The Greedy Algorithm

The "greedy” enforcer can be modified into a "greedy” optimization
algorithm:

© Initialize E = C and @ = Opnxr
© Repeat R times:
o Find (i,j) = argming, p)Ea b;

o Setﬁ',-J:l, ﬁ',‘JZOVI#j, 7AT'/7J'ZOV/7£I.;
o Set E;. =00, E j = o0.

Proposition

The greedy algorithm produces the optimal solution if there is a positive

number A > 0 and two nonnegative vectors u, v such that
C=A1-1T —y.v'.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

First architecture:

e C1r
C <
N1 Cnr

Number of internal layers: 9

Number of hidden units per layer: 250

Batch size: 200; ADAM optimizer

Loss function: cross-entropy:

> i mij(—log(#ij)) + (L — mi;)(—log(l — #i;))

Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

Cross Entropy over Training

» training  * validation

CROSS ENTROPY ERROR (LOG SCALE)

04/02/2019
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Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

MSE over training

» training * validation

MSE (LOG SCALE)

04/02/2019
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Numerical Results

Exp.1 : N =5, R =4 with RelLU activation

Avg Obj Value Diff (Predicted - True)

» training  * validation

OBJ VAL DIFF

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Exp.1: N =5, R =4 with ReLU activation

UNIVE&SIT‘I OF
A 1R

AND

Validation Set Instance #1 alidation Set Instance #1

=Prediction True Solution =Feasible Prediction  True Solution

78 9101 121314151617 18 19 20
DECISION VARIABLES (FLATTENED)

567 8 91011 1213141516 17181920
DECISION VARIABLES (FLATTENED)

DECISION VARIABLE

Validation Set Instance #1

#Greedy Prediction = True Solution

6789 1011211415181
DECISION VARIABLES (FLATTENED)

10
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Numerical Results

Exp.1: N =5, R =4 with ReLU activation

fﬁl UNIVERSITY OF
MAR) \

YLAND

Validation Set Instance #2 Validation Set Instance #2

wPrediction # True Solution =Feasible Prediction = Trus Solution

567 80 10NNDBUISIENILLN

6 78 91011 213 141516171819 20
DECISION VARIABLES (FLATTENED) 5 \ED)

Validation Set Instance #2

#GreedyPrediction = Trve Solution

6 7 8 9 1011 121314151617 18 1920

DECISION VARIABLES (FLATTENED)
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Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Second architecture:

@ Number of internal layers: 10
@ Number of hidden units per layer: 250
@ No Batch; ADAM optimizer
@ Loss function: cross-entropy:
> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
@ Training data set: 1 million random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.
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Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Cross Entropy

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

MSE over training

Radu Balan (UMD) Rep and Opt 04/02/2019
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Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)

Radu Balan (UMD) Rep and Opt 04/02/2019



Optimizations using Deep Learning
0000000000800000000000000

Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation

Iﬁ' UNIVERSITY OF
MARYLAN

AND
Validation Set Instance #1 Validation Set Instance #1

wPrediction #True Solution # Feasible Prediction = True Solution

0
1 4 710131619222528 3134 37 4043 46 4 8616467 9 £ 14 71013161922252831 343740 4346 49 61646770
JONVARIABLES (FLATTENED) DECISION VARIABLES (FLATTENED)

lidation Set Instance #1

= GresdyPrediction = True Solution

0
14710 13161922252831 3437 40 43 4649 5:
DECISION VARIABLES (FLATTENED)
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Numerical Results

Exp.2 : N =10, R = 8 with sigmoid activation
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Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

Second architecture:
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@ Number of internal layers: 10
@ Number of hidden units per layer: 250
@ Batch size 200; ADAM optimizer
@ Loss function: cross-entropy:
i Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
@ Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.
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Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

Cross Entropy
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Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

MSE over training
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Numerical Results

Exp.3: N =5, R =4 with sigmoid activation

Avg Obj Value Diff (Predicted - True)
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Numerical Results

Exp.3: N =5, R =4 with sigmoid activation
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Numerical Results

Exp.3: N =5, R =4 with sigmoid activation
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Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

Second architecture:
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@ Number of internal layers: 10
@ Number of hidden units per layer: 300
@ Batch size 200; ADAM optimizer
@ Loss function: cross-entropy:
i Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
@ Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.
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Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

Cross Entropy
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Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

MSE over training
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Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)
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Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation
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Numerical Results

Exp.4 : N =10, R = 8 with sigmoid activation
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