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Quadratic Optimization Problems

Consider two symmetric (and positive semidefinite) matrices A,B ∈ Rn×n.
The quadratic assignment problem asks for the solution of

maximize trace(ΠAΠT B)
subject to:

Π ∈ Sn

where Sn denotes the symmetric group of n × n permutation matrices.
Purpose of this talk: Present a Graph Deep Learning architecture designed
to solve the Quadratic Assignment Problem.
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QAP
Motivation

Consider two n× n symmetric matrices A,B. In the alignment problem for
quadratic forms one seeks an orthogonal matrix U ∈ O(n) that minimizes

‖UAUT − B‖2F := trace((UAUT−B)2) = ‖A‖2F +‖B‖2F−2trace(UAUT B).

The solution is well-known and depends on the eigendecomposition of
matrices A,B: if A = U1D1UT

1 , B = U2D2UT
2 then

Uopt = U2UT
1 , ‖UoptAUT

opt − B‖2F =
n∑

k=1
|λk − µk |2,

where D1 = diag(λk) and D2 = diag(µk) are diagonal matrices with
eigenvalues ordered monotonically.
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QAP
Motivation 2

The challenging case is when U is constrained to belong to the
permutation group. In this case, the previous minimization problem

min
U∈Sn

‖UAUT − B‖F

turns into the QAP:
max
U∈Sn

trace(UAUT B).

In the case A,B are graph Laplacians (or adjacency matrices), an efficient
solution to this optimization problem would solve the graph isomorphism
problem, one of the remaining milenium problems: decide if two given
graphs are the same modulo vertex labelling.
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Prior work to discrete optimizations using deep learning

Direct approach to discrete optimization: Pointer Networks (Ptr-Nets)
utilize sequence-to-sequence Recurrent Neural Networks [Vinyals’15];
Reinforcement learning and policy gradients: [Bello’16]
Graph embedding and deep Q-learning: [Dai’17]
QAP using graph deep learning: [Nowak’17] utilizes siamese graph
neural networks that act on A and B independently to produce
embeddings E1 and E2; then the product E1E T

2 is transformed into a
permutation matrix through soft-max and cross-entropy loss.
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Shift Invariance Properties

Consider A = AT and B = BT (no positivity assumption).

Lemma
The QAP associated to (A,B) has the same optimizer as the QAP
associated to (A− λI,B − µI), where λ, µ ∈ R.

Indeed, the proof of this lemma is based on the following direct
computation:

trace(Π(A−λI)ΠT (B−µI)) = trace(ΠAΠT B)−µtrace(A)−λtrace(B)+nλµ

A consequence of this lemma is that, without loss of generality, we can
assume A,B ≥ 0. In fact, we can shift the spectrum to vanish the smallest
eigenvalues of A,B.
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The case of Rank One
Assume now A = aaT and B = bbT are non-negative rank one matrices.
Then:

trace(ΠAΠT B) = |bT Πa|2 = (trace(ΠabT ))2 = 1
trace(AB)(trace(ΠAB))2

In this case we obtain the explicit solution to the QAP:

Lemma
Assume A = aaT and B = bbT are rank one. Then the QAP optimizer is
the optimizer of one of the following two optimization problems:

maximize trace(ΠC)
subject to:

Π ∈ Sn

or
minimize trace(ΠC)

subject to:
Π ∈ Sn

where C = AB.
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Linear Assignment Problems
Given a cost matrix C ∈ Rn×n, the Linear Assignment Problem (LAP) is
defined by:

maximize trace(ΠC)
subject to:

Π ∈ Sn

Without loss of generality, max can be replace by min, for instance by
solving LAP for −C .

The key observation is that LAP can be solved efficiently by a linear
program. Specifically, the convexification of LAP produces the same
optimizer:

maximize trace(WC)
subject to:

Wi ,j ≥ 0 , 1 ≤ i , j ≤ n∑n
i=1 Wi ,j = 1 , 1 ≤ j ≤ n∑n
j=1 Wi ,j = 1 , 1 ≤ i ≤ n
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Diagonal Matrices
Another case when we know the exact solution is when A and B are
diagonal matrices. Say A = diag(a) and B = diag(b). Then

trace(ΠAΠT B) = trace(diag(Πa)diag(b)) = trace(ΠabT ) = trace(ΠC)

where C = abT .

Lemma
If A = diag(a) and B = diag(b) then the solution of the QAP is given by
the solution of the LAP

maximize trace(ΠC)
subject to:

Π ∈ Sn

where C = abT .
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Approach

The idea is the following: First we convert the input data (A,B) into a
cost matrix C , and then we solve two LAPs, one associated to C the other
associated to −C . Finally we choose the permutation that produces the
larger objective function.
The conversion step (A,B) 7→ C is performed by a Graph Convolutional
Network (GCN).
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Graph Convolutional Networks (GCN)

Kipf and Welling (2016) introduced a network structure that performs
local processing according to a modified adjacency matrix:

Here T̃ = I + T , where T is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (W1,B1,W2,B2, · · · ,WL,BL).
As activation map σ we choose the ReLU (Rectified Linear Unit).
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The Specific GCN Architecture

For the QAP associated to matrices (A,B) we design a specific GCN
architecture:

X =
[

A 0
B 0

]
, T̃ =

[
In 1

‖A‖F ‖B‖F
AB

1
‖A‖F ‖B‖F

BA In

]
(3.1)

where the 0 matrices in X are designed to fit the appropriate size of W1.
For σ we choose the ReLU (Rectified Linear Unit) function in each layer
except for the last one; in the last layer we do not use any activation
function (i.e., σ = Identity). The biases B1, · · · ,BL are chosen of the form
Bk = 1 · βT

k , i.e., each row βT
k is repeated.
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GCN Guarantee

The following result applies to this network.

Theorem

Assume A = aaT and B = bbT are rank one matrices, and consider the
GCN with L layers and activation map ReLU as described above. Then for
any nontrivial weights W1, · · · ,WL and biases B1, · · · ,BL (whose rows are

repeated), the network output Y partitioned Y =
[

Y 1

Y 2

]
into two blocks

of n rows each, satisfies Y 1Y 2T = γAB, for some constant γ ∈ R. In
particular, the max-LAP and min-LAP applied to the latent representation
matrix C = Y 1Y 2T are guaranteed to produce the optimal solution of the
QAP.
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Reference Algorithms

We compare the GCN based optimizer with two different algorithms.
1. The AB Method bypasses the GCN block. Thus Y = X and the cost
matrix inputted into the LAP solver is simply C = AB (hence the name of
the method). Similar to the GCN approach, the AB Method is exact on
rank 1 inputs. But there is no adaptation of the cost matrix for other
input matrices.
2. The Iterative algorithm is based on alternating max-LAP or min-LAP as
follows:

Πk+1 ∈
{

argmax trace(ΠAΠT
k B)

Π ∈ Sn
,

argmin trace(ΠAΠT
k B)

Π ∈ Sn

}

where Π0 = I (identity), and the choice of permutation at each k is based
on which permutation produces a larger trace(ΠAΠT B).
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Comparison with Ground Truth
Results for 2 ≤ n ≤ 10 and raw data normal distributed

Average relative difference w.r.t. maximum objective function:

Figure: Top left: ABMethod, Top right: Iterative algorithm, Bottom left: GCN
with L=2 layers and bais, Bottom right: GCN with L = 3 layers and bias
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Comparison with Ground Truth
Results for 2 ≤ n ≤ 10 and raw data uniform distributed

Average relative difference w.r.t. maximum objective function:

Figure: Top left: ABMethod, Top right: Iterative algorithm, Bottom left: GCN
with L=2 layers and bais, Bottom right: GCN with L = 3 layers and bias
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Relative Comparison
Results for n = 100 and n = 200 with raw data normal distributed

Figure: Top row: Frequency of optimal algorithm for n = 100 (left), and n = 200
(right). Borrom row: Relative performance [%] to the best algorithm for n = 100
(left) and n = 200 (right)
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Conclusions

The results showed an unexpected result:
For small n when ground truth is available, the GCN architectures
performs comparable to the AB Method and in general worse than
the Iterative algorithm. Among the GCN architectures, the 2 layer
with bias architecture seems to have a small advantage compared to
the other three GCN architectures.
For large matrix size, the GCN algorithms consistently outperform the
AB Method as well as the Iterative algorithm. However the ground
truth is not available in these cases. Interestingly, for the case of
uniformly [0, 1] case the GCN schemes with no bias provide the best
objective function, whereas for the gaussian case the GCN schemes
with bias provide the best objective functions. Yet, in all cases, the
GCN with bias have the smallest relative difference to the largest
objective value in each instance.
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Thank you!

Questions?
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