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Dynamics on character varieties and geometric structures

Abstract

Classifying geometric structures on manifolds naturally leads to
actions of mapping class groups on character varieties. For
example complete affine structures on closed surfaces are
classified by GL(2,Z)-orbits on R2. Particularly basic are the
automorphisms of the variant of the Markoff surface
x2 + y2 + z2 − xyz = 20 where the dynamics bifurcates
between ergodic (level < 20) and not ergodic (level > 20).
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Classifying geometric structures

I Lie and Klein (1872): A geometry consists of the properties of
a space X invariant under transitive action of a Lie group G .

I Ehresmann (1936): Manifolds locally modeled on (G ,X ).
I Examples include:

I Euclidean structures (flat Riemanian metrics);
I Hyperbolic structures (metrics of curvature −1);
I Affine structures (flat affine connections of zero torsion).

I Can introduce isolated singularities with specified cone angles
— for example, translation surfaces are very special singular
Euclidean structures.
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Markings and the Mapping Class Group

I Classifying such (G ,X )-structures on a fixed topology Σ leads
to action of the mapping class group

Mod(Σ) := π0
(
Diff(Σ)

)
−→ Out(π)

on deformation space Def(G ,X )(Σ) of marked
(G ,X )-structures.

I Def(G ,X )(Σ) itself locally modeled on Rep(π,G )
I Mod(Σ)-action on Def(G ,X )(Σ) corresponds to Out(π)-action

on Rep(π,G ).
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Classification of Flat Tori

Euclidean geometry occurs where X = Rn and G = Isom(X ). Let
Σ be the n-torus.

I A Euclidean structure on Σ (a flat Riemannian metric)
identifies Σ with a flat torus Rn/Λ where Λ < Rn is a lattice.

I A marking of Σ is just a basis of Λ.

I The space of marked lattices (bases of Rn) is just GL(n,R).

I Thus the deformation space Def(G ,X )(Σ) of isometry classes
of marked flat tori is just the space GL(n,R)/O(n).

I The mapping class group Mod(Σ) = GL(n,Z).

I The moduli space of flat n-tori is the biquotient

GL(n,Z)\GL(n,R)/O(n)
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A more familiar analog:
Marked Riemann surfaces and Teichmüller space

I The Riemann moduli space M(Σ) parametrizes Riemann
surfaces M of a fixed topology Σ.

I Quasiprojective variety over C; singular exactly at Riemann
surfaces with nontrivial automorphisms.

I More tractable object:

Teichmüller space T(Σ) of marked Riemann surfaces (M, f ):
metric space/complex manifold ≈ R6g−6.

I Marking: Diffeomorphism Σ
f−−→ M;

Riemann surface M varies, but the topology Σ fixed.
I Equivalence classes ←→ Mod(Σ)-orbits on T(Σ).

I M(Σ) = T(Σ)/Mod(Σ).
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Coordinate atlases and development

I Geometry: Homogeneous space X = G/H.

I Topology: Manifold Σ with universal covering Σ̃ −→ Σ and
fundamental group π.

I Marking: Diffeomorphism Σ
f−−→ M; the geometry on M

varies, but the topology of Σ remains fixed.

I Patches U ⊂ M: Coordinate atlas of charts U −→ X defining
local coordinates on U modeled on X .

I On overlapping patches, coordinate changes extend (locally
uniquely) to transformations of X from G .

I Local charts define development immersion Σ̃ ↪→ X ,
equivariantly respecting holonomy homomorphism π −→ G .

I Development globalizes coordinate charts.
I Holonomy globalizes coordinate changes.
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Ehresmann-Weil-Thurston principle

I Construct deformation space of marked (G ,X )-structures on
Σ up to appropriate equivalence relation.

I Holonomy defines a mapping

Def(G ,X )(Σ)
H−−→ Rep(π,G )

I Best cases stratify into smooth manifolds and H “tries to be”
local diffeomorphism (Thurston 1979).

I Changing marking corresponds to action of mapping class
group on Def(G ,X )(Σ)

I Orbits comprise moduli space of (unmarked)
(G ,X )-structures on Σ.

I Analogous to Riemann space M(Σ)←→ T(Σ)/Mod(Σ).
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Example of trivial (proper) dynamics:
marked hyperbolic surfaces

I X = H2,G = Isom(H2) ∼= PGL(2,R):

I Then Def(G ,X )(Σ) is the Fricke space F(Σ)←→ T(Σ).

I Embedding F(Σ)
H−−→ Rep(π,G ) as connected component:

I Trivial dynamics: Action of Mod(Σ) on F(Σ) is proper.

I Quotient identifies with the Riemann moduli space M(Σ).

I For Σ = T 2, the deformation space of unit-area Euclidean
structures identifies with the upper half-plane H2.

I Modular group Mod(Σ) ∼= GL(2,Z) acts properly by linear
fractional transformations on H2.
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Examples of nonproper (interesting) dynamics

Proper (trivial) dynamics:PGL(2,Z)-action on H2

I For Σ = T 2, the deformation space of unit-area Euclidean
structures is the upper half-plane H2 with action the modular
group Mod(Σ) ∼= GL(2,Z) acting properly by linear fractional
transformations.

I If χ(Σ) < 0, my work with Suhyoung Choi implies Mod(Σ)
acts properly on the deformation space RP2(S) of marked real
projective structures.

I In contrast, complete affine structures on with usual linear
action of GL(2,Z). (O. Baues 2000).
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Complete affine surfaces

I Euclidean structures T 2 f−−→ R2/Λ are all affinely isomorphic
and correspond to the origin 0 ∈ R2.

I Others obtained from the polynomial diffeomorphism

R2 φ−−→ R2

(x , y) 7−→ (x + y2, y)

as T 2
∼=−−→ R2/φΛφ−1. (Kuiper 1950)

I If translation λ(x , y) = (x + s, y + t) lies in the lattice Λ, then(
x , y
)

φλφ−1

−−−−−→
(
x + 2ty + (s + t2), y + t

)
is affine.
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The twisted cubic cone

I Baues showed that these correspond to invariant affine
structures on the torus as a Lie group.

I Deligne (2021: This deformation space is naturally a twisted
cubic cone{

[X : Y : Z : W ] ∈ R4

∣∣∣∣ XZ − Y 2 = YW − Z 2 = 0

}
,

the image of the GL(2,Z)-equivariant Veronese embedding

R2 −→ R4

[
x
y

]
7−→
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x2y
xy2
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Chaotic dynamics

I The linear action of Mod(T 2) ∼= GL(2,Z) on R2 is chaotic —
no reasonable quotient.

I Euclidean area on R2 is invariant.
I (Moore 1966) Action is ergodic:

I Every invariant function is a.e. constant.
I Almost every orbit is dense.
I ... although discrete orbits exist, e.g. 1

n
Z2...

I Therefore, the classification of geometric structures should be
more insightfully regarded as a dynamical system, since the
moduli space — its quotient — is often intractable.
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Character functions and Hamiltonian twist flows

I Elements γ ∈ π1(Σ) define character functions on Rep:

Rep(π,G )
fγ−−→ R

[ρ] 7→ <
(
Trρ(γ)

)
with Hamiltonian vector fields Ham(fγ).

I For the Fricke-Teichmüller component when G = PSL(2,R),
γ corresponding to a simple loop, Ham(fγ) generates the
Fenchel-Nielsen twist flows, (Wolpert 1982).

I For G = SL(2), character functions fγ of simple γ generate
coordinate ring of Rep(π,G ).
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Hamiltonian flows and Dehn twists

I Let G = SU(2). Dehn twist Twγ generates lattice inside
R-action corresponding to Ham(fγ)-orbits.

I ρ(γ) ∈ G elliptic =⇒ Integral curves of Ham(fγ) are circles Cγρ .
I For almost every value of fγ , the Dehn twist Twγ defines

ergodic translation of Cγρ .

I Ergodic decomposition: Every Twγ-invariant function is a.e.
Ham(fγ)-invariant.

I If fγ generate the coordinate ring of Rep(π,G ), their
differentials dfγ span every cotangent space.

I Ham(fγ) span every tangent space.
I Flows of Ham(fγ) generate transitive action on each connected

component of where the vector fields span.

I Mod(Σ)-action ergodic on regions where simple loops have
elliptic holonomy.
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Vogt-Fricke theorem and F2

I Let F2 = 〈X ,Y 〉 be free of rank two. Then

Hom(F2,SL(2)) ∼= SL(2)× SL(2)

and Rep(F2,SL(2)) is its quotient under Inn
(
SL(2)

)
.

I The Inn
(
SL(2)

)
-invariant mapping

Hom(F2, SL(2)) −→ C3

ρ 7−→

ξ := Tr
(
ρ(X )

)
η := Tr

(
ρ(Y )

)
ζ := Tr

(
ρ(XY )

)


defines an isomorphism

Rep(F2,SL(2))
∼=−−−→ C3.
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Boundary trace for the one-holed torus Σ1,1

I Out(F2)-invariant commutator trace function:

Rep(F2,SL(2)) ∼= C3 κ−−→ C
(ξ, η, ζ) 7−→ ξ2 + η2 + ζ2 − ξηζ − 2

= Tr[ρ(X ), ρ(Y )]

I (Nielsen): Every automorphism of F2 maps [X ,Y ] to a
conjugate of itself or its inverse.

I Every homotopy-equivalence Σ1,1  Σ1,1 is homotopic to
homeomorphism of Σ1,1.

I Mod(Σ) ∼= Out(π), just like closed surfaces.

I Out(F2) ∼= GL(2,Z) = Mod(Σ1,1)

I This isomorphism with C3 depends on a superbasis of F2:
an isomorphism F2

∼= 〈X ,Y ,Z | XYZ = 1〉.

I Superbases are vertices in the Markoff-Bowditch tree
associated to the character variety of F2.
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Invariant Poisson structure

I The boundary trace

κ(ξ, η, ζ) := ξ2 + η2 + ζ2 − ξηζ − 2

determines the Poisson structure on C3 defined by bivector

dκ · ∂ξ ∧ ∂η ∧ ∂ζ
= (2ξ − ηζ) ∂η ∧ ∂ζ

+ (2η − ζξ) ∂ζ ∧ ∂ξ
+ (2ζ − ξη) ∂ξ ∧ ∂η.

I Symplectic structure on level sets κ−1(k) include:

I Weil-Petersson symplectic structure on Fricke spaces k ≤ −2;
I Narasimhan-Atiyah-Bott structure for G = SU(2).

I κ−1(k) are the relative character varieties.
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Vieta involutions

I Nonlinear automorphisms of

κ(ξ, η, ζ) = ξ2 + η2 + ζ2 − ξηζ − 2 = k

generated by involutions:ξη
ζ

 7−→
ηζ − ξη

ζ

 ,
ξη
ζ

 7−→
 ξ
ξζ − η
ζ

 ,
ξη
ζ

 7−→
 ξ

η
ξη − ζ


I Coordinate projections C3 → C2 branched double coverings;

involutions are deck transformations.

I Fixing η and ζ yields quadratic equation in ξ;

ξ2 − (ηζ) ξ = k + 2− η2 − ζ2

whose roots ξ and ξ′ = ηζ − ξ sum to linear coefficient ηζ.
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Cayley cubic ξ2 + η2 + ζ2 − ξηζ = 4

I Reducible representations correspond precisely to κ−1(2).

I Quotient of C∗ × C∗ by the involution

(a, b) 7−→ (a−1, b−1).

ξ = a + a−1, η = b + b−1, ζ = ab + (ab)−1

I Homogeneous dynamics: GL(2,Z)-action on (C∗ ×C∗)/(Z/2).
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R-points: Unitary representations

I R-points correspond to representations into R-forms of SL(2):
either SL(2,R) or SU(2).

I Characters in [−2, 2]3 with κ ≤ 2 ←→ SU(2)-representations.
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R-points: Hyperbolic structures on 3-holed spheres

I Hyperbolic three-holed spheres parametrized by boundary
lengths `X , `Y , `Z ≥ 0

ξ := −2 cosh
(
`X/2)

)
≤ −2

η := −2 cosh
(
`Y /2)

)
≤ −2

ζ := −2 cosh
(
`Z/2)

)
≤ −2

I Necessarily k = κ(ξ, η, ζ) ≥ 18 = κ(−2,−2,−2).

I (−2,−2,−2) corresponds to the complete finite-area
3-punctured sphere.

I Homotopy-equivalences Σ1,1  Σ0,3 (and other surfaces with
π1 ∼= F2) form wandering domains for Out(F2)-action.
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Example: The Markoff surface x2 + y 2 + z2 = xyz

R3 ∩ κ−1(−2) parametrizes hyperbolic structures on the punctured
torus. The origin (0, 0, 0) corresponds to the unique
SU(2)-representation with k = −2. The famous Markoff triples
correspond to triply symmetric hyperbolic punctured tori.



Fricke orbits define wandering domains for k > 2

I Homotopy equivalences Σ1,1  Σ0,3 define embeddings
F(Σ0,3)k ↪→ κ−1(k) for k > 18;

I For k ≤ 18, action ergodic.

I For k > 18, action ergodic on complement.

I The level surface k = 18 extends to the famous Clebsch
diagonal surface in CP3 defined by:

(X0)5+(X1)5+(X2)5+(X3)5+(X4)5 = X0+X1+X2+X3+X4 = 0

in homogeneous coordinates.
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x2 + y 2 + z2 − xyz = 20



Ergodicity for compact/noncompact groups

I Mod(Σ)-action ergodic on each component Rep(π,G )τ with
respect to the symplectic measure ν. (G-, Pickrell-Xia)

I Ergodic: Only vectors in L2
(
Rep(π,G )τ

)
fixed by Mod(Σ) are

constants.
I Weak-mixing: Only finite-dimensional Mod(Σ)-invariant

subspaces on L2
(
Rep(π,G )τ

)
are constants.

I Other examples of chaotic dynamics occur, even when G is
noncompact: (Marché-Wolff 2016) For G = PSL(2,R) and in
genus 2, three types of components:

I Euler class ±2 (maximal): Fuchsian representations, proper
Mod(Σ)-action;

I Euler class ±1 ergodic Mod(Σ)-action;
I Euler class 0 component singular; two ergodic components.

I Main technique for proving ergodicity uses dynamics of Dehn
twists in Mod(Σ).
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twists in Mod(Σ).
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The universal moduli space over Teichmüller space.

I Flat bundle EG (Σ) over M(Σ) with fibers Rep(π,G )
parametrizes these structures as Riemann surface M varies:

EG (Σ) :=
(
T(Σ)× Rep(π,G )

)
/Mod(Σ)

M(Σ) := T(Σ)/Mod(Σ)

I Leaves of horizontal foliation FG (Σ) := [T(Σ)× {[ρ]}]
correspond to Mod(Σ)-orbit Mod(Σ)[ρ] on Rep(π,G ).

I Dynamics of FG (Σ) equivalent to dynamics of action of
discrete group Mod(Σ).
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Extending Teichmüller geodesic flow

I Replace dynamics of Mod(Σ) on Rep(π,G )τ by a
measure-preserving flow Φ on flat bundle UEG (Σ).

I Teichmüller unit sphere bundle UM(Σ) over M(Σ) with
Teichmüller geodesic flow φ:

UM(Σ) := UT(Σ)/Mod(Σ)

M(Σ) := T(Σ)/Mod(Σ)

invariantly stratified; strata fall into components UσM(Σ).

I Insert Rep(π,G)τ as the fiber:

Uσ
τ EG (Σ) :=

(
UσT(Σ) × Rep(π,G)τ

)
/Mod(Σ)

and horizontally lift φ to flow Φ on Uσ
τ EG (Σ).

I Mod(Σ)-dynamics on Rep(π,G ) replaced by equivalent action
of more tractable (continuous) groups R and SL(2,R).

I (Forni – G ) For G compact, Φ strongly mixing on Uσ
τ EG (Σ):

I µ
(
gt(A) ∩ B

)
→ µ(A)µ(B) for A,B measurable and gt →∞.
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Happy birthday, Giovanni!


