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Affine structures on surfaces and the twisted cubic cone

William M. Goldman

Abstract. We identify the deformation space of marked complete affine strc-

tures on the 2-torus T2 with the cone over a twisted cubic curve in RP3.
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Introduction

An affine structure on an n-dimensional manifold is defined by a system of
local corrdinates where the coordinate changes are locally defined by affine trans-
formations of Rn. In this way the manifold is locally modeled on an affine space
A (corresponding to Rn, but without the algebraic structure of a vector space).
Equivalently, an affine structure on a manifold is a flat torsionfree affine connec-
tion. In [12], Kuiper described the (geodesically) complete affine structures on T2

and showed they are of two types: either Eucildean structures (flat Riemannian
structures), or other structures defined by flat but non-Riemannian connections.
Figures 1 and 2 depict these two types of structures. In this paper we show that
they naturally form a twisted cubic cone in R4.

In a more geometric context, a complete affine structure on a manifold M is a
representation of M as a quotient Γ\A, where A is an affine space, and Γ < Aff(A)
a discrete group of affine transformations acting properly on A. More generally,
Kuiper classifies affine manifolds covered by convex domains in A2. He shows that
if a closed surface admits such a structure then χ(M) = 0, and conjectures this is
true without assuming convexity. This was later proved by Benzécri [7].
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If Σ is a fixed surface, a marked affine structure on Σ is a pair (f,M) where
M is an affine manifold and f is diffeomorphism Σ → M . Marked affine struc-
tures (f,M) and (f ′,M ′) are equivalent if they differ (up to isotopy) by an affine

isomorphism M
φ−−→ M ′ of affine manifolds such that f is isotopic to f ′ ◦ φ. The

space of equivalence classes of marked structures is called the deformation space./̇
It has a natural topology (see [10], §6 Classification) which in general can be quite
pathological. However, in many cases it is locally homeomorphic to the “finite-
dimensional” space Hom

(
π1(Σ), G

)
/G where G = Aff(A).1 This space is analogous

to the Teichmüller space, consisting of equivalence classes of marked Riemann sur-
faces. The mapping class group Mod(Σ) acts simply transitively on the markings,
and its quotient is the Riemann moduli space of Riemann surfaces homeomorphic
to Σ.

The classification of affine structures on surfaces was completed by Nagano-
Yagi [13] and Arrowsmith-Furness [1]. In particular the deformation space of all
affine structures on T2 is not Hausdorff. In this paper we discuss the subspace
CA(T2) corresponding to complete structures. Baues [2, 3, 4] showed that CA(T2)
is homeomorphic2 to R2.

A parametrization of this space by a “period map” is given in [6], and raises the
question whether this space has a natural singular smooth structure. This paper
resolves this question.

The deformation space of marked complete structures admits a natural action of
the mapping class group Mod(T2) ∼= GL(2,Z), permuting the markings. Baues ob-
served that this is the natural linear action of GL(2,Z) on R2. This action is chaotic,
and the quotient GL(2,Z)\R2 is intractable. Indeed, this dynamical system is orbit-
equivalent to the horocycle flow on the unit tangent bundle SL(2,Z)\SL(2,R) of the
elliptic modular curve, which is known to be uniquely ergodic.

This dramatically contrasts with the action of Mod(T2) on the deformation
space of Euclidean structures. That action is proper, with quotient R+×M0 where
M0 the Riemann moduli space of elliptic curves and the R+ parameter corresponds
to the area of a Euclidean structure on a torus. Of course, Euclidean structures
on T2 are complete affine structures. However, since all Euclidean structures are
affinely equivalent, the subspace

CA(T2)Euc ⊂ CA(T2)

corresponding to Eudclidean structures collapses to a single point in CA(T2). This
point is the origin in R2 ≈ CA(T2), which maps to the unique singular point in the
twisted cubic cone.

The main theorem of the paper is the following:

Theorem. The deformation space of affine equivalence classes of marked com-
plete affine structures on T2 naturally identifies with a twisted cubic cone C ⊂ R4.

Outline of the paper

§1 describes the cone on the twisted cubic and its symmetries. §2 describes the
theory of affine structures and reduces the classification to commutative nilpotent

1Hom
(
π1(Σ), G

)
has the natural structure as a real affine algebraic set, and Hom

(
π1(Σ), G

)
/G

is given the quotient topology by the action of Inn(G) by composition.
2Indeed, for a while it was believed [9] that the subspace comprising complete structures is

not Hausdorff. Baues [2] addresses this error in the literature.
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2-dimensional R-algebras, which are studied in §3. Such an algebra A, together with
a basis, completely determines the marked structure. From the general theory, this
already gives a proof of our main theorem. One key point is that completeness is
equivalent to the connection being equiaffine (sometimes called parallel volume).
This means its holonomy preserves volume, that is, its linear holonomy has deter-
minant ±1. In this particular case, it is equivalent to the stronger condition of
unipotence of the linear holonomy. Compare the discussion of the Markus con-
jecture in [10], §11 and the proof of completeness of closed affine manifolds with
unipotent holonomy in [10], §8.4.
§4 gives a direct proof of the main theorem, using the Christoffel symbols Γ k

ij

of the flat torsionfree equiaffine connection,that the deformation space CA(T2) of
complete affine structures identifies with the cone C on the twisted cubic. The
Christoffel symbols are just the structure constants of the algebra A. The key
point is that Kuiper’s classification implies that the identity component of the
affine automorphism group acts simply transitively on M . This implies that the
Christoffel symbols are constant, enabling the identification of marked structures
with nilpotent commutative associative 2-dimensional algebras over R.

Acknowledgements

I thank Pierre Deligne for this result and many inspiring conversations. This
research was performed during a membership at the School of Mathematics of the
Institute for Advanced Study in 2022-2023. Indeed it was during a lecture there that
Deligne suggested the main theorem of this paper. I wish to express my gratitude
to the Institute for their hospitality and excellent working conditions there.

I am also grateful to the anonymous referee for a careful reading and suggesting
many improvements.



4 GOLDMAN

Figure 1. One example of a complete affine 2-manifold is a Eu-
clidean flat torus, obtained as the quotient of the Eudlidean plane
E2 by a lattice Λ ∈ R2 of translations.

Figure 2. Applying a polynomial diffeomorphism of A2 such as

(x, y)
f7−−→ (x+y2, y) conjugates translations to a simply transitive

affine action of R2 which is not Euclidean-isometric. The quotient
A2/fΛf−1 is a complete affine 2-torus.
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1. The cone on the twisted cubic

The twisted cubic cone C ⊂ R4 is the image of the map

R2 ↪→ Sym3
(
R2
) ∼= R4(1.1)

A
B

 7−→

A3

A2B

AB2

B3

 =:


U

X

Y

Z

 ∈ R4.

which embeds R2 topologically in R4. It is singular, and its unique singularity is
the origin. It is the cone over the rational normal curve of degree 3 in RP3.

Explicitly, C is defined by the three homogeneous quadratic equations

X2 = UY

UZ = XY

Y 2 = XZ

in the coordinates U,X, Y, Z. No two of these equations suffice to define C, despite
C having codimension two in R4.

The map (1.1) is GL(2,R)-equivariant with respect to the standard action on
R2 and the induced action on the symmetric power Sym3

(
R2
)
. The cone C ⊂

R4 is invariant under this action of GL(2,R). In particular this action restricts
to GL(2,Z) < GL(2,R), and GL(2,Z) is isomorphic to the mapping class group
Mod(T2).

Later in this paper we identify C with the deformation space CA(T2) of marked
complete affine structures on T2 and the GL(2,Z)-action on C with the Mod(T2)-
action on CA(T2).

2. Affine structures on the torus

Kuiper [12] showed that every complete affine structure on the torus T2 arises
as a flat Euclidean torus Λ\E2 where Λ < R2 is a lattice of translations or a quotient
Γ\A2 where Γ < G is a lattice where G is the group of affine transformationsx

y

 7−→
1 2b

0 1

x
y

+

a+ b2

b


of A2, where a, b ∈ R. The group G is isomorphic to R2; indeed is conjugate to the
translation subgroup R2 < Aff(A2) by the diffeomorphism (x, y) 7−→ (x+ y2, y).

Since the action of G on A2 is simply transitive, it induces a left-invariant3 affine
structure on G. Furthermore this passes down to an invariant affine structure on the
Lie group Γ\G, so the complete affine structures on T2 are all invariant structures
on T2 with respect to its structure as an abelian Lie group.

Left-invariant affine structures on Lie groups form a rich algebraic theory de-
scribed by (possibly non-associative) algebras, where the algebraic structure is de-
fined by covariant differentiation of left-invariant vector fields. Commutator in this

3Since G is abelian, it is also right-invariant.
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algebra is just the usual Lie bracket of left-invariant vector fields (because the con-
nection is torsionfree). Flatness of the connection implies the defining condition
that the associator is symmetric in its first two arguments; hence these algebras are
called left-symmetric algebras. Bi-invariant affine structures correspond to the case
when this algebra is associative.4

Completeness for these structures is equivalent to several conditions, such as
the parallelism of right-invariant volume forms, or unipotence of the affine action
by left-multiplication

The theory of affine structures on closed manifolds with nilpotent holonomy
is studied in [8] (building on Smillie [14] for abelian holonomy). In particular
the equivalence of geodesic completeness with parallel volume (or equiaffinity) and
unipotent linear holonomy is shown there, and expounded in §11 of [10] in a broader
context. For left-invariant affine structures on Lie groups —- that is, for affine
Lie groups, —- completeness is equivalent to right-invariant volume forms being
parallel [11]. Thus for abelian affine Lie groups, completeness is equivalent to
equiaffinity.

As mentioned in the introduction, T2 is the only closed orientable surface sup-
porting an affine structure. Furthermore, a complete affine structure on T2 is
necessarily invariant Equivalently, every complete affine structure on T2 is invari-
ant under a structure of T2 as an abelian Lie group. 5 Baues [3, 4] surveys the
classification of affine structures on surfaces in detail; see also [10].

Since the connection is invariant, the covariant derivative of invariant vector
fields is invariant, and the Christoffel symbols, the coefficients of the covariant
derivatives of a basis of invariant vector fields are constant.

3. Commutative nilpotent algebras

Theorem 3.1. A marked complete affine structure on T2 corresponds to a based
2-dimensional vector space V together with a symmetric bilinear form Γ making V
into an algebra A, such that A is a commutative R-algebra with A3 = 0.

For an extensive discussion, see [10],§8.4. For the reader’s convenience we
sketch the proof here.

Proof. Let T2 −→M be a marked complete affine structure, that is a home-
omorphism (defined up to isotopy) onto a complete affine 2-manifold M . Choose

a universal covering M̃ → M and a developing pair (dev, h) where the develop-

ing map tM
dev−−−→ A2 is a diffeomorphism and the holonomy homomorphism h is

an embedding of π1(M) onto a discrete subgroup Γ < Aff(A2) acting properly on
A2. By the general algebraic theory described above (or direct calculation as in
Kuiper’s original classification), Γ is conjugate to a lattice in a subgroup Gµ of
Aff(A2) comprising elements having the formx

y

 7−→
1 2µb

0 1

x
y

+

a+ µb2/2

b


4See §10 of [10] for an extensive discussion of this theory.
5This was known to Kuiper [12], although he didn’t state it in this form.
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where a, b ∈ R and µ ∈ R is a fixed parameter. The Lie algebra of G is generated
by affine vector fields:

X := ∂/∂x

Yµ := µy ∂/∂x+ ∂/∂y.

Under covariant differentiation these vector fields span an algebra with multiplica-
tion given by Table 1.

Furthermore every 2-dimensional commutative associative algebra A with A3 =
0 has a basis as above: If A2 = 0, the multiplication is trivial and we may take any
basis X,Y (and µ = 0). Otherwise nilpotence implies that dimA2 = 1. Let X base
A2, and extend {X} to a basis {X,Y } of A.

�

In practice V will be the abelian Lie algebra of left-invariant (right-invariant)
vector fields, and Γ is the covariant derivative operator

V × V
Γ−−→ V

(ξ, η) 7−→ ∇ξη.

The above theory implies that A is nilpotent, and indeed A3 = 0 (so associativity
is obvious).

Such a connection can be described in terms of the twisted cubic cone (1.1) as
follows.

The connection (or the algebra structure) relates to the symmetric power

Sym3(V) as follows. For convenience choose a nonzero element ω in the line
∧2

(V).
A vector v ∈ V determines a covector ωv ∈ V∗ by

u ∧ v = ωv(u)ω.

An endomorphism E ∈ End(V) of rank one is determined by nonzero vectors k
(generating the kernel) and j (generating the image) by

E = ωk ⊗ j.

The endomorphism E is nilpotent if and only if j and k are linearly dependent. In
our case, unipotence of the linear action is equivalent to nilpotence of E.

A connection is given by the tensor product ψ ⊗ E where ψ ∈ V∗ is a covector
and E is an endomorphism. Flatness of the corresponding connection means that
in the decomposition E = ωv ⊗ w, the covectors ωv and ψ are linearly dependent.
Hence a flat connection taking values in nilpotent endomorphisms corresponds to
an element of V∗ ⊗ End(V) of the form ωv ⊗ Ev where Ev := ωv ⊗ v, that is in the

X Yµ

X 0 0

Yµ 0 µX

Table 1. A commutative 2-dimensional algebra with A3 = 0
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image of

V −→ V∗ ⊗ End(V)

v 7−→ ωv ⊗
(
ωv ⊗ v

)
which is evidently equivalent to (1.1). The final section §4 gives a direct identifica-
tion using only the assumption of area-preserving holonomy rather than unipotent
holonomy.

4. Flat torsionfree equiaffine connections

Choose a coordinate system (x1, x2) on A2 and coordinate vector fields

∂i :=
∂

∂xi

for i = 1, 2. Write ∇i for the covariant differential operator ∇∂i and Γ k
ij for the

Christoffel symbols for ∇ with respect to the frame ∂i:

∇i∂j = Γ k
ij ∂k

(Einstein summation). If ∇ has zero torsion, ∇i∂j = ∇j∂i, and

(4.1) Γ k
21 = Γ k

12.

for k = 1, 2. Since ∇ is equiaffine ∇
(
dx1∧dx2

)
= 0. It follows that for every vector

field ξ, the curvature operator η 7−→ ∇ξη has trace zero. Take ξ = ∂i for i = 1, 2
to obtain:

(4.2) Γ 1
i1 + Γ 2

i2 = 0

for i = 1, 2. In the following calculations, (4.2) and (4.1) imply

Γ 1
21 = Γ 1

12 = −Γ 2
22(4.3)

Γ 2
21 = Γ 2

12 = −Γ 1
11

so we reduce our calculations to the four variables

Γ 1
11, Γ 2

11, Γ 1
22, Γ 2

22.

Since the covariant derivatives are constant,

∇1∇2∂1 = ∇1

(
Γ 1

21 ∂1 + Γ 2
21 ∂2

)
(4.4)

=
(
Γ 1

11Γ
1

21 + Γ 1
12Γ

2
21

)
∂1 +

(
Γ 2

11Γ
1

21 + Γ 2
12Γ

2
21

)
∂2

∇2∇1∂1 = ∇2

(
Γ 1

11 ∂1 + Γ 2
11 ∂2

)
(4.5)

=
(
Γ 1

21Γ
1

11 + Γ 1
22Γ

2
11

)
∂1 +

(
Γ 2

21Γ
1

11 + Γ 2
22Γ

2
11

)
∂2

∇1∇2∂2 = ∇1

(
Γ 1

22 ∂1 + Γ 2
22 ∂2

)
(4.6)

=
(
Γ 1

11Γ
1

22 + Γ 1
12Γ

2
22

)
∂1 +

(
Γ 2

11Γ
1

22 + Γ 2
12Γ

2
22

)
∂2

∇2∇1∂2 = ∇2

(
Γ 1

12 ∂1 + Γ 2
12 ∂2

)
(4.7)

=
(
Γ 1

21Γ
1

12 + Γ 1
22Γ

2
12

)
∂1 +

(
Γ 2

21Γ
1

12 + Γ 2
22Γ

2
12

)
∂2

Flatness of∇ implies∇1◦∇2 = ∇2◦∇1. Subtracting (4.5) from (4.4), [∇1,∇2] ∂1 =
0 implies:
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Γ 1
12Γ

2
21 = Γ 1

22Γ
2

11(4.8)

for the ∂1-component of [∇1,∇2]∂1

Γ 2
11Γ

1
21 + Γ 2

12Γ
2

21 = Γ 2
21Γ

1
11 + Γ 2

22Γ
2

11(4.9)

for the ∂2-component of [∇1,∇2]∂1.

Subtracting (4.7) from (4.6), [∇1,∇2] ∂2 = 0 implies:

Γ 1
11Γ

1
22 + Γ 1

12Γ
2

22 = Γ 1
21Γ

1
12 + Γ 1

22Γ
2

12(4.10)

for the ∂1-component of [∇1,∇2]∂2.

Γ 2
11Γ

1
22 = Γ 2

21Γ
1

12(4.11)

for the ∂2-component of [∇1,∇2]∂2.

Now apply (4.3) to rewrite (4.8), (4.9), (4.10), and (4.11) in terms of the four
variables

Γ 1
11, Γ 2

11, Γ 1
22, Γ 2

22.

First, (4.8) becomes

(4.12) Γ 1
11Γ

2
22 = Γ 2

11Γ
1

22,

Since ∇ is equiaffine, the curvature tensor takes values in traceless endomorphisms.
Thus the ∂1-component of [∇1,∇2] ∂2 is the negative of ∂2-component of [∇1,∇2] ∂1.
Thus (4.11) is equivalent to (4.8) and (4.11) provides nothing new.

Next, (4.9) and (4.10) respectively become:(
Γ 1

11

)2
= Γ 2

11Γ
2

22(4.13) (
Γ 2

22

)2
= Γ 1

11Γ
1

22.(4.14)

The three equations (4.12), (4.13) and (4.14) now describe the twisted cubic cone
C as in §1, by taking:

U = Γ 2
11

X = Γ 1
11

Y = Γ 2
22

Z = Γ 1
22,

thus identifying the deformation space CA(T2) of marked complete affine structures
on T2 with C.
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