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The concept of a group, which dates back to the 1830s, is due to Évariste Galois and was
used for the study of systems of polynomial equations. The profound fact is that any
transformation of variables which preserves such a system S transforms any solution
of S into another solution of S. The set of transformations which preserve S is the
group of symmetries of S. Another remarkable fact is that properties of the group of
symmetries of S can affect properties of the set of solutions of S. From this remark
emerges another significant fact: one can study the properties of the set of solutions
of S without being able to explicitly give these solutions. This is a variation of the
central ideas of Felix Klein’s Erlangen program. The theory of infinite groups of Lie
and Cartan is an extension to systems of partial differential equations [I. M. Singer and
S. Sternberg, J. Analyse Math. 15 (1965), 1–114; MR0217822]. Via formalisms based
on Koszul-Spencer homology, H. Lewy’s counterexample informs us that there exist
systems of partial differential equations which are formally integrable but which have no
differentiable solution [Ann. of Math. (2) 66 (1957), 155–158; MR0088629]. This provides
an illustration of links between properties of the groups of symmetries of a system S
and properties of the set of solutions of S.

Comparisons of mathematically structured sets provide other areas where groups
reign. Before receiving a clear description, the comparison parameters of a structured
mathematical set are called local charts. A local chart is used to compare a structured
set Y with another structured set X which serves as a model. Roughly speaking, a local
chart is a partial map f of Y into X.

The risk of prematurely jumping in with both feet is great if two local charts defined
at y ∈ Y are not compatible. The crucial problem is to specify the content of the notion
of compatibility of two local charts. To progress in this crucial problem one considers
the group H formed of symmetries of the structured set X. By composition of maps, a
local chart f is associated with the set of partial maps

H(f) =H ◦ f.

Let f and f ′ be two local charts defined at y ∈ Y ; they are compatible if

f ′ ∈H(f).

Now one relies on the Erlangen program to say that the pair (H,X) is a geometry. To
any subgroup

G⊂H

is associated the geometry (G,X) which is a restriction of (H,X).
Two local charts f and f ′ which are defined at y ∈ Y are G-compatible if

f ′ ∈G(f).

A (G,X)-structure in Y is a complete family of local charts which are pairwise G-
compatible. There arises the following fundamental question:

Given a (structured) geometry (G,X), what are the (structured) sets Y which admit
a (G,X)-structure?

The book under review is devoted to this fundamental question. In addition to a
rich foreword and introduction, the book is composed of 15 chapters which are grouped
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into three parts. The numbering of the chapters is independent of parts. Below is an
overview.

The central object of Part 1 is formed of two geometries which are closely linked to
linear algebra and which will serve as model structure for differential topological spaces
(otherwise called differentiable manifolds). These two structures are the affine structure
and the projective structure.

Chapter 1 is devoted to the affine spaces. An affine space is a pair (T,X) formed of a
vector space T and a set X subject to a simply transitive action

T ×X →X.

An element of T is called a translation on X. Two elements of X are parallel if we pass
from one to the other by means of a translation.

Thus the affine geometry is the geometry of parallelism. A straight line is an orbit
of one parameter subgroup of T . The group of symmetries of (T,X) is called the affine
group (T,X). The affine group of (T,X) is denoted by Aff(T ). The notion of affine
connection is introduced. An important fact is that an affine structure can be defined
in terms of both the affine connection and the notion of parallelism relative to an
affine connection. Following the general principle, any subgroup of Aff(T ) defines a
sub-geometry of the affine geometry. This principle is implemented to introduce both
new notions and the groups of their symmetries. Examples are the notions of distance,
volume and angle which give rise to the group rigid affine transformations, the special
linear group and the group of similarities.

Chapter 2 is devoted to the projective spaces. The relationships between the affine
space and the sub-models treated as in Chapter 1 are called extension or restriction
relationships.

On the other hand, the transition from affine spaces to projective spaces is based on
processes of transition to quotient modulo equivalence relations in an affine space (T,X)
and in the affine group Aff(T ). It is also a process of compactification (see Section 2.1).

It is appropriate to remember that the image a straight line by an affine map is either
another straight line or a point. The second alternative gives rise to the notion of a
singular projective mapping, which is the subject of Subsection 2.3.2.

There are two other notions which serve as a basis for introducing the axioms of
projective geometry. These are the notion of alignment and the notion of cross-ratio of
four aligned points. Section 2.5 deals with these notions.

Another useful key notion is the projective duality which transforms aligned pints
into concurrent straight lines. This viewpoint is also an object of Chapter 2. Numerous
examples and exercises are offered to readers.

Chapter 3 is devoted to duality and non-Euclidean geometry. Marking (axiomatic)
points in the development of projective geometry are presented, with particular emphasis
on the case of dimension 2.

A constant quality of this book is the abundance of exercises to arouse more curiosity
in the reader.

Chapter 4 deals with the notion of convexity. A subset C of an affine space is convex
if any line segment whose extremities belong to C is entirely included in C. Section 4.1
is devoted to convex domains with particular emphasis on convex cones. Convex cones
and their geometry are the subject of Section 4.2.

It is appropriate here to emphasize that convex domains offer sumptuous frameworks
for the convergence of algebra, analysis, geometry and information [F. Barbaresco, AIP
Conference Proc. 1641 (2015), no. 1, 74–81, doi:10.1063/1.4905965]. What’s more, this
list is not exhaustive.

Chapter 4 is dense and rich in points of history of the geometry of convex domains as
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well as in still-promising perspectives.
In Part 2 the frameworks are topological spaces enriched with differential structure,

which makes them differentiable manifolds.
The four chapters of Part 1 are devoted to geometries which will serve as (local)

models for geometric structures in differentiable manifolds. There are several ways to
provide a topological space Y with a differential structure. The method used in Section
5.1 is that of complete atlas of local charts.

Section 5.2 is devoted to the notion of development of an (H,X)-structure in a
differentiable manifold Y . A relevant by-product is the notion of holonomy, which is
a representation of the fundamental group of Y in H. These objects are presented in
a manner accessible to non-experts. For instance, Section 5.4 is devoted to geometric
structures on manifolds of dimension 1.

Chapter 6 is of central interest to non-geometers. It is essentially devoted to examples.
The subject of Chapter 7 is the classification of geometric structures.
It must be emphasized that from the point of view of global analysis on differentiable

manifolds, the structures studied in this book are almost all of type 1. Chapter 7 deals
with what in global analysis is called the equivalence problem [B. Malgrange, Ann.
Fac. Sci. Toulouse Math. (6) 26 (2017), no. 5, 1087–1136; MR3746623]. It is known that
in the category of structures of finite type formal equivalence leads to differentiable
equivalence. Thus for Chapter 7, only algebraic formalisms are necessarily expected.

Sections 7.1 to 7.4 are devoted to geometric structures in compact manifolds while
Section 7.5 is devoted to the cases of open manifolds.

The main subject of Chapter 8 is the completeness of geometric structures. As was
mentioned in Part 1, an affine structure can be defined by means of gauge theory (i.e.,
study of linear connections). In this context based on gauge theory, the development
mapping is defined using parallel transport [J.-L. Koszul, Ann. Inst. Fourier (Greno-
ble) 18 (1968), fasc. 1, 103–114; MR0239529]. So, the word “completeness” conveys
three possible understandings, two of which each correspond to one of two notions of
developing map, the third being geodesic completeness. These alternatives and their in-
terrelations are at the heart of Chapter 8. A central question is under what sufficient
conditions an affine structure is complete. The author recalls conjectures including the
conjecture of Markus which links completeness to a structural property holonomy. An
important and large part of Chapter 8 is devoted to an survey of works on the conjecture
of Markus.

As a reminder, Part 1 was largely dedicated to model structures strongly linked to the
geometry of affine spaces and that of projective spaces. Part 3 is devoted to differentiable
manifolds which admit these structures.

Among the pioneering works in affine geometry, there are those of Benzécri. Benzécri’s
works and their extensions by other authors largely occupy Chapter 9. According to
one of the most striking classics of Benzécri, the flat torus is the only orientable closed
surface which admits a complete affine structure.

Nowadays, there exists a category of differentiable manifolds whose power affects an
immense part of the mathematical universe. This is the category of Lie groups.

Any group H is a domain of two canonical dynamics, (LH , H) and (AdH , H); LH is
the group of left translations on H and AdH is the group of inner automorphisms of H.
Let G be an m-dimensional real Lie group. An (Aff(Rm),Rm)-structure on G is defined
by a complete Aff(Rm)-compatible atlas

A= {(Uj , φj)} .

What does it mean that an affine structure on G is invariant by LG?
Another challenge is the question of knowing which finite-dimensional Lie groups
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admit an affine structure which is invariant under left translations.
In Part 1 it is established that affine geometry has a versus linear connection. A linear

connection defines a multiplicative structure in the vector space of vector fields. Thus,
as for the studies of linear connections invariant by one or the other of the two dynamics
LG and AdG, they are reduced to the studies of certain types of linear representations
of the Lie algebra of vector fields which are invariant by LG. These studies and their
subsidiaries constitute the content of Chapter 10.

Chapter 11 is a more extensive return to relations between volume invariance and
completeness.

Chapter 12 is devoted to hyperbolicity. Here one needs to be vigilant regarding
the meaning. In Riemannian geometry hyperbolicity characterizes a property of the
curvature. In affine geometry hyperbolicity characterizes a (topological) property of the
development mapping. Chapter 12 is concerned with the second configuration where,
however, Riemannian structures stand out in an unavoidable way (Hessian structure,
and Kobayashi metric).

Chapter 13 is devoted to the second issue of Part 3, i.e., the projective structures.
The challenge is centered on the projective geometry of surfaces.

Chapter 14 is devoted to complex projective structures. Both Chapters 13 and 14 are
not long, but they are dense.

The category of differentiable manifolds of dimension 3 is a universe of great geometric
and topological challenges (remember the long resistance of the Poincaré conjecture).
Chapter 15 is devoted to geometric structures in differentiable manifolds of dimension
3 and 4. Significant space is devoted to Margulis spacetimes and to deformations of
hyperbolic surfaces.

The last section of the book is 15.4. It is devoted to Dupont’s classification of
hyperbolic torus bundles.

The final part of the book is devoted to appendices. Here, with a pedagogical concern
worthy of praise, the author brings together tools, many of which are only familiar to
specialists. The bibliography is of relevance that commands admiration.

This book should be of great interest to a wide spectrum of readers, ranging from
curious readers to researchers through non-geometric teachers.

Michel Nguiffo B. Boyom


