AMSC/CMSC 466 FALL 2011 SAMPLE HOUR EXAM I

1. Consider the expression

$$\frac{1}{1-x} - \frac{1}{1+x},$$

assuming $x \neq \pm 1$.

- (a) For what range of values of x is it difficult to compute this expression accurately in floating-point arithmetic ?
- (b) Give a rearrangement of the terms such that, for the range of x in part (a), the computation is more accurate in floating-point arithmetic.
- 2. Assume a decimal (base 10) floating point system having machine presicion $\epsilon_{mach} = 10^{-5}$ and an exponent range of ± 20 . What is the result of each of the following floating-point operations

3. Let

$$A = \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix}$$

- (a) Find a lower triangular matrix L such that $A = LL^T$ (Choleski factorization).
- (b) Let $\mathbf{b} = (10, -4)^T$. Use the Choleski factorization to solve $A\mathbf{x} = \mathbf{b}$ by forward elimination and back substitution.
- 4. In \mathbb{R}^2 , is it possible to have two vectors x and y such that $||x||_1 > ||y||_1$ but $||x||_{\infty} < ||y||_{\infty}$? If so, give an example.
- 5.
- (a) How is the condition number of a matrix A defined for a given matrix norm?
- (b) How is the condition number used in estimating the accuracy of a computed solution to a linear system $A\mathbf{x} = \mathbf{b}$?
- 6. Given the three data points (-1, 2), (0, 1), (1, 2) Find the interpolating quadratic:
 - (a) in the form $ax^2 + bx + c$ by solving a system of linear equations.
 - (b) in the Lagrange form
 - (c) in a Newton form.

Show that the three representations give the same polynomial.

7. Let

$$s(x) = \begin{cases} x+1 & -2 \le x \le -1, \\ x^3 - 2x - 1 & -1 \le x \le 1, \\ x - 3 & 1 \le x \le 2. \end{cases}$$

Is s(x) a natural cubic spline ? Explain.