
LECTURES ON U-GIBBS STATES.

DMITRY DOLGOPYAT

1. SRB states and u-Gibbs sates.

An important problem in smooth ergodic theory is to understand an
appearance of chaotic behavior in systems governed by deterministic
laws. Now it is understood that chaotic behavior is caused by the expo-
nential divergence of nearby trajectories. However hyperbolic systems
usually have many invariant measures with quite different properties.
Thus an important question is which measures should be studied. If
the system preserves a smooth invariant measure then it is natural to
investigate this measure first. In the dissipative setup when there are
no smooth invariant measures it is natural to start with some smooth
measure and look how it evolves in time. There are at least two ap-
proaches

(a) Take a smooth measure µ and consider weak limits of 1
n

∑n−1
j=0 f

j(µ);

(b) (SRB states.) Consider Birkhoff averages Sn(A)(x) = 1
n

∑n−1
j=0 A(f jx).

Given an f invariant measure µ define basin of µ as follows

B(µ) = {x : ∀A ∈ C(M)Sn(A)(x) → µ(A) as n→ +∞}.
µ is called SRB measure if the Lebesgue measure of its basin is positive.

SRB states are named after Sinai, Ruelle and Bowen who proved
that topologically transitive diffeomorphisms and flows have unique
SRB state whose basin of attraction has total Lebesgue measure. This
result gives us the first example of the situation when there are any
invariant measures but only one describes the dynamics of Lebesgue
measure. In general for partially hyperbolic systems either (1) or (2)
impose certain restrictions on the class of invariant measures which can
appear in the limit. To explain this let me recall some definitions and
set the notation.

A diffeomorphism f of a smooth manifold M is called partially hy-
perbolic if there is an f invariant splitting

TM = Eu ⊕ Ec ⊕ Es

and constants

λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6 λ2 < 1, λ5 > 1
1
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such that

∀v ∈ Es λ1||v|| ≤ ||df(v)|| ≤ λ2||v||,
∀v ∈ Ec λ3||v|| ≤ ||df(v)|| ≤ λ4||v||,
∀v ∈ Eu λ5||v|| ≤ ||df(v)|| ≤ λ6||v||.

A standard reference for partially hyperbolic systems is [22]. We need
the following facts:

– There are foliations W u and W s tangent to Eu and Es respectively.
These foliations can be characterized as follows. Take δ > 0 then

W s(x) = {y :
d(f jx, f jy)

(λ2 + δ)j
→ 0 as j → +∞}

(1) W s(x) = {y :
d(f−jx, f−jy)

(1/λ5 + δ)j
→ 0 as j → +∞}

– W u and W s are absolutely continuous. Let V1 and V2 be smooth
manifolds with

dim(V1) = dim(V1) = dim(Ec) + dim(Es)

transversal to Eu. Let π : V1 → V2 be the holonomy map along the
leaves of W u then π is absolutely continuous and

(2) det(π)(x) =

∞
∏

j=0

det(df−1|T (f−jV1))(f
−jx)

det(df−1|T (f−jV2))(f−jπx)

(That is ∀A ⊂ V1 mes(π(A)) =
∫

A
det(π)(x)dx.) The convergence of

(2) follows from the fact that f−jx and f−jπx are exponentially close
by (1). This implies also that π is Holder continuous.

Remark. π is usually not Lipschitz.

Sometimes it is more convenient to express this property differently.
To this end let us introduce a collection P of subset of leaves of W u.
Fix constants K1, K2, K3, γ1. Let S be a subset of a leave of W u. S ∈ P
if it satisfies the following conditions:

• diam(S) ≤ K1

• mes(S) ≤ K2

• Let ∂εS = {y ∈ S such that d(y, ∂S) ≤ ε} then

mes(∂εS) ≤ K3ε
γ1 .

Given K4 and γ2 let E1 be the set of probability measures of the form

l(A) =

∫

S

A(x)ρ(x)dx
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where S ∈ P, ln ρ ∈ Cγ2(S) and || ln ρ||γ2 ≤ K4. Let E2 be convex hall
of E1 and E3 be weak closure of E2. Thus E3 is the set of measures ab-
solutely continuous with respect to W u with nice conditional densities.
Let F be a smooth foliation transversal to Eu. Let D be a topological
disc in some leaf of F and let S ∈ P. Let V be the local product of S
and D.

Lemma 1. The restriction of Lebesgue measure to V belongs to E3 if
Kj and γj are chosen appropriately.

Proof. Decompose D into small cubes D =
⋃

j Dj. Let Vj = [Dj, S].
Let Sj be the piece of W u inside V passing through the center of Dj.
If A ∈ C(M) then

∫

Vj

A(x)dx ≈
∫

Sj

A(x)Vol(Dj(x))
Vol(TM)

Vol(TSj)Vol(TDj)
(x)dx

whereDj(x) is the piece of F inside Vj passing through x. But Vol(Dj(x)) ≈
Vol(Dj) det(πx) where πx is the holonomy map Dj → Dj(x). Thus

∫

Vj

A(x)dx ≈ Vol(Dj)

∫

Sj

A(x)ρj(x),

where

ρj(x) =
det(π)Vol(TM)

Vol(TSj)V ol(TDj)
(x)dx

as claimed. �

Let Ē be the set of measures obtained similar to E3 but with restric-
tion || ln ρ||γ2 ≤ K4 replaced by

||ρ||γ2 ≤ K5.

Since any function can be represented as a difference of two functions
each of each is less than say 10 it follows that ∀K5 ∃K4 such that

Ē(K5) ⊂ E3(K4) − E3(K4).

Lemma 2. If Kj, γj are chosen appropriately then Lebesgue measure
belongs to Ē.

Proof. We cover M by a finite number of cylinders M =
⋃

j Vj where

each Vj is as in Lemma 1. Take a partition of unity based on {Vj} and
argue as in Lemma 1. �

Lemma 3. For appropriate choice of constants the following holds. If
l ∈ E3 and µ is a limit point of 1

n

∑n−1
j=0 f

j(l) then µ ∈ E3.
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Proof. It is enough to show this for l ∈ E1. Let

l(A) =

∫

S

A(x)ρ(x)dx.

We first show that f jS can be well approximated by the element of P.
Fix some r and let Q = {ql} be a maximal r-separated set in a leaf of
W u containing f jS. Set

Kl = {z : d(z, ql) = min
m

d(z, qm)}.

We will call Kl’s Dirichlet cells. We have

B(qm,
r

2
) ⊂ Kl ⊂ B(ql, r)

and ∂Kl consist of a finite number of smooth hypersurfaces {d(z, ql) =
d(z, qm)}. Thus Kl ∈ P. Let Tj be the union of cells lying strictly inside
f jS. Then Tj ∈ f jS and f jS − Tj ⊂ ∂r(f

jS). Thus

mes(S − f−jTj) ≤ mes(∂r/λj
5
S) ≤ K3

(

r

λj
5

)γ1

.

Let

ll(A) =

∫

f−jKl
ρ(x)A(f jx)dx

mes(f−jKl)
.

Then

ll(A) = cl

∫

f−jKl

ρ(f−jy) det(df−j|Eu)(y)A(y)dy.

We need to obtain a uniform bound on the Holder norm of ln[ρ(f−jy) det(df−j|Eu)(y)].
Since f−j is a strong contraction on W u we obtain

∣

∣ln ρ(f−jy1) − ln ρ(f−jy2)
∣

∣ ≤ K4d(f
−jy1, f

−jy2)
γ2 ≤ K4d(y1, y2)

γ2

λγ2j
5

and
∣

∣ln det(df−j|Eu)(y1) − ln det(df−j|Eu)(y2)
∣

∣ ≤
∑

p

∣

∣ln det(df−1|Eu)(f−py1) − ln det(df−1|Eu)(f−py2)
∣

∣ ≤

∑

p

Const
d(y1, y2)

λp
5

.

Thus f jl = lIj + lII
j where lIj ∈ E3 and ||lII

j || ≤ Constθj for some θ < 1.
This implies the desired result. �

A slight modification of the proof shows that this result remains true
if the initial measure belongs to Ē. Thus we get
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Corollary 1. (a) Any limit point of 1
n

∑n−1
j=0 f

j (Lebesgue) belongs to
E3.

(b) There is at least one invariant measure in E3.

Definition. Invariant measures in E3 are called u-Gibbs states.

Thus if we want to study the iterations of Lebesgue measures we
have to deal with u-Gibbs states. Before we show that the same is true
for SRB measures let us make a few remarks. Namely we note that for
u-Gibbs states it is enough to consider very special densities instead of
arbitrary Holder ones. Namely we saw in the proof of Lemma 3 that if
ρ is a density which is the image of a smooth density ρ∗ under f j then

ρ(y1)

ρ(y2)
=
ρ∗(f−jy1)

ρ∗(f−jy2)

j−1
∏

p=0

det(df−1|Eu)(f py1)

det(df−1|Eu)(f py1)

Thus as j → ∞
ρ(y1)

ρ(y2)
→

∞
∏

p=0

det(df−1|Eu)(f py1)

det(df−1|Eu)(f py1)

Definition. For S ∈ P canonical density ρcan is defined by two condi-
tions

(I)
ρ(y1)

ρ(y2)
=

∞
∏

p=0

det(df−1|Eu)(f py1)

det(df−1|Eu)(f py1)

and

(II)

∫

S

ρcan(y)dy = 1.

We call ρcandy canonical volume form.

It follows that ρcan is defined uniquely since if we now ρcan at one
point then we can find it at any other point using (I) and then (II)
allows to compute the value at the reference point. Also ρcan depends
on S only via the normalization constant. Canonical density allows to
identify u-Gibbs states in many examples.

Example. M = T
d, Q ∈ SLd(Z), fx = Qx mod 1. Suppose that Sp(Q)

is not contained in the unit circle. Let Γu be the sum of eigenspaces with
eigenvalues larger than 1. Then the leaves of W u are planes parallel
to Γu and (df |Eu) is multiplication by Q. Thus df transfers Lebesgue
measure to its multiple and so canonical density with respect to Lebesgue
measure is 1. Thus u-Gibbs states are measures invariant with respect
to f and Γu considered as a subgroup of T

d.
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Example. M = SLd(R)/Γ where Γ is a cocompact lattice in SLd(R)
and fx = diag(λ1, λ2 . . . λd) where {λj} is a decreasing subsequance.
Then the leaves of W u are the orbits of the group N of upper triangu-
lar matrices and f acts on the leaves by conjugation. In particular f
transfers the Haar measure on N to its multiple so the canonical den-
sity with respect to Haar measure is one. So again the u-Gibbs states
are measures invariant with respect to N and f.

Now we discuss the relation between u-Gibbs states and SRB states.

Proposition 1. Let A ∈ Cγ(M) and I = {
∫

Adµ}µu-Gibbs. Then ∀ε > 0
∃δ > 0, C > 0 such that ∀l ∈ E3

l(d(
1

n
Sn(A), I) ≥ ε) ≤ Ce−δn.

Proof. We need to bound the probabilities of two events: 1
n
Sn(A) is

greater than the maximal average +ε and it is less than the maximal
average −ε. It suffices to estimate the probability of the first event the
second one can be bounded similarly. So suppose that the integral of
A with respect to any u-Gibbs state is less than −ε and let us estimate
the probability that Sn(A) ≥ 0. Note first that there exists n0 such
that ∀l ∈ E3 ∀n ≥ n0

l

(

1

n
Sn(A)

)

≤ −ε
2
.

(For if there existed sequences {l(j)}, {nj} violating this inequality

then taking a limit point of 1
nj

∑n−1
p=0 (f pl(j)) we would get a u-Gibbs

state with a large average of A.) To simplify the notation let us as-
sume that n0 = 1. It first consider the measures of the form l(A) =
∫

K
ρcan(x)A(x)dx, where K is a Dirichlet cell.

Lemma 4. There exist constants K6 and θ1 < 1 which may depend
on A but not on K such that for any K there is a countable partition
K =

⋃

j Kj and numbers nj such that

(a) fnjKj is a Dirichlet cell;

(b) mes(
⋃

nj>N

Kj) ≤ K6θ
N
1

(c)
∑

j

mes(Kj) sup
Kj

[Snj
(A) +

εnj

4
] ≤ 0
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The proof of the lemma is given in the appendix. Let us now deduce
the proposition from it. Consider

φK(δ) =
∑

j

mes(Kj) sup
Kj

exp
[

δSnj
(A)
]

It follows from Lemma 4 that ∃δ0, C1, C2 > 0 such that uniformly in K
φK is analytic in |δ| < δ0, φK(0) = 0, φ′

K(0) ≤ −C1 and |φ′′
K(0)| ≤ C2.

Hence ∃δ̄, θ̄ < 1 such that ∀K φK(δ̄) < θ̄. Now given m > 0 let
us define inductively the partition K =

⋃

j Kj,m and numbers nj,m as
follows. Let Kj,1 = Kj and if for some mKj,m are already defined apply
Lemma 4 to obtain the partition fnj,mKj,m =

⋃

lQl and numbers n(Ql)
satisfying the conclusion of the lemma. Set nj,m,l = n(Ql) + nj,m and
Kj,m,m = f−nj,m,lKj.m,l and reindex {Kj,m,l} to obtain {Kj,m+1}. Let

φK,m =
∑

j

mes(Kj,m) exp

[

δ sup
Kj,m

Snj,m

]

.

We claim that

(3) φK,m(δ̄) ≤ θ̄m

Indeed, suppose that (3) is verified up to some m. Then

φK,m+1(δ̄) =
∑

j

∑

l

mes(Kj,m,l)exp

[

δ sup
Kj,m,l

Snj,m,l
(A)

]

≤

∑

j

∑

l

mes(Kj,m,l)exp

[

δ( sup
Kj,m,

Snj,m
(A) + sup

f−n(Ql)Ql

Sn(Ql)(A)

]

.

Summation over l for fixed j gives

φK,m+1 ≤ θ̄φK,m(δ̄) ≤ θ̄m+1

as claimed. Since (3) is defined in terms of supremum we get
∫

K

ρcan(x) exp
[

δSnm(x)(A)(x)
]

dx ≤ θ̄m,

where nm(x) = nj,m if x ∈ Kj,m. This implies

l(Snm(x)(A) ≥ −mε̄) ≤ (eε̄θ̄)m.

Using similar argument for Laplace transform of n(x) we get that there

exists C, θ̃ < 1 such that

l(nm(x) ≥ Cm) ≤ θ̃m.

From (b) we obtain

l(nm+1(x) − nm(x) ≥ ε) ≤ K6θ
εm
1 .
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Now letm(n, x) be the largest number such that nm(x) ≤ n. If Sn(A)(x) ≥
0 then one of three events should happen.

Either (A) m > n
C

or
(B) Snm(n,x)

(A)(x) ≥ −mε̄ or

(C) nm+1 − nm ≥ mε̄

||A||0
but each of them has exponentially small probability. This proves the
proposition for Dirichlet cells with canonical densities. If instead of
canonical density we have a density ρ such that cρcan ≤ ρ ≤ Cρcan

then the same result is true with larger constant so the conclusion is
true for Dirichlet cells with arbitrary density satisfying ||ρ|| ≤ K4. Now
take arbitrary S ∈ P, let ñ = εn and decompose f ñS = (

⋃

Kl)
⋃

Z
where Kl are Dirichlet cells and mes(f−ñZ) ≤ θ̄ñ

2 . Applying our result
to each cell Kl we obtain the statement in full generality. �

Theorem 1. (a) Any SRB measure is u-Gibbs.
(b) If there is only one u-Gibbs state then it is SRB measure and its

basin has total measure in M.

Thus to find SRB states we have to look among u-Gibbs states and
there is a way to prove existence of SRB states.

Proof. Let µ be an SRB state. Let {Aj} be a sequence of functions
whose linear span is dense in C(M). By proposition 1 ∀m there exists
u-Gibbs state νm such that νm(Aj) = µ(Aj) for j = 1 . . .m. (Indeed

~{µ(Aj)} ∈ { ~{ν(Aj)}}ν−u-Gibbs since otherwise there would exist {cj}
such that µ(

∑

j cjAj) 6∈ {ν(∑j cjAj)}ν−u-Gibbs which would contradict
Proposition 1. Then νm → µ and so µ is a u-Gibbs state as claimed.

(b) By Proposition 1 1
n
Sn(A)(x) → µ(A) for Lebesgue almost all

x. �

Exercise 1. Deduce from Lemma 1 that if Ω is a set such that for all
x mes(Ω

⋂

W u(x)) = 0 then Ω has zero Lebesgue measure.

Exercise 2. Let S be a compact submanifold (with boundary) transver-
sal to Ec ⊕Es and ρ be continuous probability density on S. Prove that
any limit point of

ln(A) =
1

n

n−1
∑

j=0

∫

S

A(f jx)ρ(x)dx

is u-Gibbs.

Exercise 3. M = T
d, Q ∈ SLd(Z), fx = Qx mod 1.

(a) Prove that f is ergodic iff Sp(Q) does not contain roots of unity.
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(b) If f is ergodic show that it has unique u-Gibbs state (Lebesgue
measure on T

d.)

Hint. Let Γ be the sum of eigenspaces with eigenvalues larger than 1.
Unique ergodicity of Γ is equivalent to projection of Γ to T

d being dense.
Let T = Γ̄, then T is a torus and f can be projected to f̃ : T

d/T →
T

d/T. Now Sp(f̃) ⊂ S1 and so all eigenvalues of f̃ are roots of unity

since overwise Sp(f̃m) are different for different m but det(tfm − λ)
is an integer polynomial and since its roots are on the unit circle this
polynomial can assume only finitely many different values.

Exercise 4. Let f : M → M be a partially hyperbolic diffeomorphism
and G be a compact connected Lie group. Let τ : M → G be a smooth
function. Define F : M ×G→M ×G by F (x, g) = (fx, τ(x)g).

(a) Prove that F is partially hyperbolic. Relate W u(F ) to W u(f).
What can be said about canonical densities?

(b) Prove that for any u-Gibbs state µf for f there is at least one
u-Gibbs state µF for F which projects down to µf .

Exercise 5. Give an example of a diffeomorphism having unique SRB
measure but many u-Gibbs measures.

Exercise 6. Let fj → f in C2 and µj → µ. If µj are u-Gibbs for fj

then µ is u-Gibbs for f.

Exercise 7. Let A ∈ Cγ(M) and I = {
∫

Adµ}µu-Gibbs. Then ∀ε ∃C, δ
and a neighborhood U(f) ⊂ Diff2(M) such that ∀fj ∈ U if Fj = fj ◦
fj−1 · · · ◦ f1 then

mes

(

x : d(
1

n

n
∑

j=1

A(Fjx), I) ≥ ε

)

≤ Ce−δn.

References for Section 1: General information about partially
hyperbolic systems could be found in [9, 22]. The first result about
the absolute continuity of W u was proven in [2]. u-Gibbs states are
introduced in [35]. Further large deviation type bounds for partially
hyperbolic systems can be found in [42]. Our proofs are motivated by
[43].

Appendix A. Proof of Lemma 4.

We first show how to construct a partition satisfying (a) and (b) and
slightly modify the construction to ensure (c). We follow [43]. Let n0

be sufficiently large number. Set F = fn0. nj will be multilples of n0.
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Let λ = λn0
5 be the minimal expansion of F on W u. Let

Jk = {y :
r0
λk+1

≤ d(y, ∂K) ≤ r0
λk

}.

Define t0(y) to equal k on Jk and 0 elsewhere. We proceed by induction.
Let Dn =

⋃

nj≤n0nKj, D0 = ∅. We suppose that Dn is already defined

and that there is a function tn : K − Dn → N. Let An = {tn = 0},
Bn = {tn ≥ 0}. (The meaning of tn is that we will not try to add
a point to our partition for next tn iterations.) Take F n+1An and
let {Ql} be the partition of the leaf containing F n+1K into Dirichlet
cells. Let Q1, Q2 . . . Ql be the cells such that Qj ⊂ Int(F n+1An) and
d(Qj, ∂F

n+1An) ≥ r0. Add F−n−1Qj to Dn+1. Set tn+1 = k on

{y ∈ An :
r0
λk+1

≤ d(F n+1y, F n+1Dn+1) ≤
r0
λk

}

and tn+1 = 0 elsewhere on An. On Bn set tn+1 = tn − 1. Our goal is to
prove (b). We first establish three estimates.

(I)
mes(Dn+1)

mes(An)
≥ c1,

(II)
mes(Bn+1

⋂

An)

mes(An+1)
≤ c2,

(III)
mes(An+1)

mes(Bn)
≥ c3.

The proofs of all three are similar. To establish (I) note that if y ∈
An −Dn+1 then

d(F ny, F nBn) ≤ 2r0
λ
.

Let z be a point such that

d(F ny, F nz) ≤ 2r0
λ
.

Let m < n be the last time z was transfered from Am−1 to Bm. Then

d(Fmy, Fmz) ≤ 2r0
λn−m

.

Let

T = F n+1(An −Dn+1)
⋂

B(z,
2r0
λ

),

T̃ = Fm−nT and Ũ be the union of geodesic segments passing through
z̃ = F n−mz such that the length of each segment is twice the length

from z̃ to T̃ along the corresponding ray. Then mes(Ũ)

mes(T̃ )
≥ c̃1 and all
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points in F n−m(Ũ − T̃ ) ⊂ F n+1Dn+1. Using bounded distortion prop-
erties along the orbit of F we obtain (I). (II) and (III) can be verified
in a similar fashion.

(II) and (III) imply that mes(An)/mes(Bn) is uniformly bounded from
below (since if mes(An) ≤ δmes(Bn), then

mes(An+1) ≥ c3mes(Bn) ≥ c3
mes(An

⋃

Bn)

1 − δ
,

mes(Bn+1 ≤ (1 − c3)mesBn ≤ (1 − c3)(1 + δ)mes(An

⋃

Bn),

so
mes(An+1)

mes(Bn+1)
≥ c3

1 − c3

1 + δ

1 − δ
≥ δ

if δ is sufficiently small. Thus for all n either mes(An) ≥ δmes(Bn) or
mes(An+1) ≥ δmes(Bn+1). So the claim follows from (II).)

Let q be the constant such that ∀n mes(An) ≥ qmes(Bn), then

mes(Dn+1)

mes(An

⋃

Bn)
≥ c1

1 + 1/q

and so

mes(An+1

⋃

Bn+1) ≤ 1 − c1
1 + 1/q

mes(An

⋃

Bn).

This proves (b). Thus we have constructed a partition satisfying (a)
and (b). To ensure (c) we make the above construction but at the first
step wait not n0 but N iterations where N � n0. Then for most of K
nj = N and so

∫

ρ(x)

[

Snj(x)(A)(x) +
εnj(x)

4

]

dx ≤ −Nε
4

+

∫

nj>N

ρ(x)





nj(x)−1
∑

p=N

(

A(f px) +
ε

4

)



 dx

By (b) the second part is bounded uniformly in N so if N is sufficiently
large

∫

ρ(x)

[

Snj(x)(A)(x) +
εnj(x)

4

]

dx ≤ −Nε
8
.

On the other hand the oscillations of Snj
(A) on fnjKj are of order 1

so replacing the integral by the supremum increases it by at most a
constant amount. This completes the proof of Lemma 4. �
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2. Uniqueness.

2.1. Coupling argument. Let us now explain how to demonstrate
the uniqueness of u-Gibbs state. Let us begin with the simplest exam-
ple: M = T

2 and f is a linear Anosov automorphism fx = Qx mod 1
where Q ∈ SL2(Z), Sp(Q)

⋂

S1 = ∅. One way to examine this system
is in term of Fourier analysis but we will explain a method which works
in a more general setting. Take two measures l1, l2 ∈ Ē. We want to
show that fnl1 − fnl2 → 0, then taking l2 to be a u-Gibbs state µ we
get fnl → µ as needed. Of course it is enough to consider the case
when lj ∈ E1. Moreover we can suppose that

(4) lj(A) =

∫

γj

A(x)dx,

where γj are unstable curves of length 1. Indeed for any

l(A) =

∫

γ

ρ(x)A(x)dx

(fnl)(A) =
1

λn

∫

fnγ

ρ(Q−ny)A(y)dy

where λ is the largest eigenvalue of Q. Decomposing Qmγ =
⋃m

j=1 σj

where all σj except the last have length 1 and approximating ρ ◦Q−n

by constants on each σj we approximate fnl by a convex combination
of measures of type (4). So let γj satisfy (1). Lift γj to R

2. There
is an integer translate γ̃2 of Q

n
2 γ2 such that the distance between the

endpoints of γ̃2 and Q
n
2 γ1 is less than 2. Thus we can cut the ends

of γ̃2 and Q
n
2 γ1 to obtain the curves γ̄1 and γ̄2 such that γ̄1 ⊂ Q

n
2 γ1,

γ̄2 ⊂ γ̃2 length(γ̃2 − γ̄2) ≤ 1, length(Q
n
2 γ1 − γ̄1) ≤ 1, and γ̄2 is obtained

from γ̄1 by projection π along the leaves of W s and d(x, πx) ≤ 1. Now
if A ∈ Cγ(M) then

fn(l1)(A) − fn(l2)(A) =
1

λ
n
2

[∫

Q
n
2 γ̄1

A(y)dy −
∫

Q
n
2 γ̄2

A(y)dy +O(1)

]

(the second term corresponds to Q
n
2 γ1 − γ̄1 and γ̃2 − γ̄2.) Now

∫

Q
n
2 γ̄2

A(y)dy =

∫

Q
n
2 γ̄1

A(πy)dy,

so
1

λ
n
2

|
∫

Q
n
2 γ̄1

A(y)dy −
∫

Q
n
2 γ̄2

A(y)dy| =

1

λ
n
2

∫

Q
n
2 γ̄1

|A(y) − A(πy)|dy ≤ ||A||dγ(Q
n
2 γ̄1, Q

n
2 γ̄2) = ||A||d

γ(γ̄1, γ̄2)

λ
n
2

.
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This show the uniqueness of u-Gibbs state for linear Anosov automor-
phism.

The same approach to divide fnS1 and fnS2 into parts so that the
elements of fnS1 are close to elements of fnS2 work in a more gen-
eral setting. Additional difficulty is that in a more general situation
projection along the leaves of a complimentary foliation need not to
be measure preserving but this could be overcomed by coupling ’thick’
parts of fnS1 to several ’thin’ parts of fnS2 and vice verse.

Let us give the precise statement. We consider partially hyperbolic
diffeomorphisms f : M → M such that the central distribution is
integrable and df |W c is an isometry. We also assume that the non-
wandering set of f is all of M.

Definition. f is called topologically transitive if ∀ open U1, U2 ∃n such
that fnU1

⋂

U2 6= ∅. f is called topologically mixing if ∀ open U1, U2

∃n0 such that ∀n ≥ n0 f
nU1

⋂

U2 6= ∅.
Theorem 2. Let f be as above. If f is topologically mixing then it has
unique u-Gibbs state µ and ∀l ∈ Ē

(5) fnl → µ.

Corollary 2.

(a) ∀A,B ∈ Cγ(M)

∫

B(x)A(fnx)dµ(x) → µ(B)µ(A).

(b) ∀A,B ∈ Cγ(M)

∫

B(x)A(fnx)dx→
∫

B(x)dxµ(A).

Proof. Apply Theorem 2 to l1(A) = µ(BA) and to l2(A) =
∫

B(x)A(x)dx.
�

Sketch of proof of Theorem 2. Again we want to show that ∀l1, l2 ∈ Ē
fnl1 − fnl2 → 0. The key step is the following lemma.

Lemma 5. ∀ε ∃n0, c such that ∀l1, l2 ∈ Ē

fn0 lj = clIj + (1 − c)lIIj ,

where ∀A ∈ Cγ(M) ∀n
∣

∣fn(lI1)(A) − fn(lI2)(A)
∣

∣ ≤ ε||A||γ.
Theorem 2 is obtained by repeatedly applying Lemma 5 to lj, l

II
j etc.

Proof of Lemma 5. We claim that topological mixing implies that ∀
open U ∀S ∈ P there exists n0 such that ∀n ≥ n0

(6) fnS
⋂

U 6= ∅.
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In fact ∃y, r such that B(y, r) ⊂ U. Let S̃ =
⋃

x∈S Bcs(x,
r
2
). Since f

is topologically mixing ∃n0 such that ∀n ≥ n0 f
nS̃
⋂

B(y, r
2
) 6= ∅. But

then fnS
⋂

U 6= ∅. It suffices to prove Lemma 5. Let

lj(A) =

∫

Sj

ρj(x)A(x)dx.

But by (6) ∀ε̂ ∃n0 ∃S̄1, S̄2 such that S̄j ⊂ Sj and fn0 S̄2 is obtained from
fn0S̄1 by the projection πcs along the leave of W cs and d(x, πcsx) ≤ ε̂.
Take δ sufficiently small and let

lI1(A) = δ

∫

S̄1

ρ1(x)A(x)dx,

lI2(A) = δ

∫

S̄2

ρ1(Px)A(x)
−1

det(Px)dx,

where P denotes f−n0 ◦ πcsf
n0. �

Exercise 8. Prove that if in Theorem 2 we assume that f is topolog-
ically transitive (rather than topologically mixing) then f has unique
u-Gibbs state (but (5) is not necessarily satisfied).

In case non-wandering set of f isM topological mixing follows follows
from accessibility [9].

Exercise 9. Suppose that W c are orbit of a group G which acts on
fibers by isometries and gf = fg. Given x define accessibility class
of A(x) = {y : ∃ chain x = z0, z1 . . . zn = y} such that zj+1 ∈
W u(zj)

⋃

W s(zj). Let Ac(x) = A(x)
⋂

W c(x).
(a) Prove that Ac(x) is an orbit of a subgroup Γ(x) of G.
(b) Show that f is topologically mixing iff Ac(x) = W c(x).

Hint. Consider a function φ(y) = d(A(y)
⋂

W c(x), Ac(x)).

Exercise 10. Let A0(x) = {y : ∃ chain x = z0, z1 . . . zn = y} such

that zj+1 ∈ W u(zj)
⋃

W s(zj)
⋃

Orb(x). Let A0c(x) = A0(x)
⋂

W c(x).
Prove that

(a) A0c(x) is an orbit of a subgroup Γ0(x) of G;
(b) Γ(x) is normal in Γ0(x) and Γ0/Γ is abelian;
(c) f is topologically transitive iff A0c(x) = W c(x).

References to Subsection 2.1. Our exposition follows [32, 8, 44].
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2.2. Rates of convergence. Here we review what is know about the
rates of convergence. We say that f is strongly u-transitive with expo-
nential rate if ∀γ

|l(A ◦ fn) − µ(A)| ≤ Const(γ)||A||Cγ(M)θ
n

for some θ(γ) < 1. We say that f is strongly u-transitive with super-
polinomial rate if ∀m ∃k(m) such that ∀l ∈ Ē ∀A ∈ Ck(M)

|l(A ◦ fn) − µ(A)| ≤ Const||A||Ck(M)

1

nm
.

(a) Anosov diffeomorphisms. These are defined by the condi-
tion that Ec = 0. This is perhaps the most studied class of partially
hyperbolic systems.

Proposition 2. (see e.g [7].) Topologically transitive Anosov diffeo-
morphisms are strongly u-transitive with exponential rate.

(b) Time one maps of Anosov flows.

Proposition 3. ([12, 13]) Suppose that f is a time one map of topo-
logically transitive Anosov flow whose stable and unstable foliations are
jointly non-integrable, then f is strongly u-transitive with superpoli-
nomial rate. If in addition Eu and Es are C1 then f is strongly u-
transitive with exponential rate.

(c) Compact skew extensions of Anosov diffeomorphisms.
Let h : N → N be topologically transitive Anosov diffeomorphism, K
be a compact connected Lie group, M = N × G and τ : N → G be a
smooth map. Let f(x, y) = (hx, τ(x)y).

Proposition 4. ([14]) Generic skew extension is strongly u-transitive
with superpolynomial rate. In particular if G is semisimple then all
ergodic extensions are strongly u-transitive with superpolynomial rate.
Also, if N is an infranilmanifold then all stably ergodic with superpoli-
nomial rate.

(d) Quasihyperbolic toral automorphisms. Here M = T
d and

f(x) = Qx (mod 1) where Q ∈ SLd(Z), sp(Q) 6⊂ S1.

Proposition 5. ([26]) Quasi-hyperbolic toral automorphisms are strongly
u-transitive with exponential rate.

(e) Translations on homogeneous spaces. Let M = G/Γ where
G is a connected semisimle group without compact factors and Γ is an
irreducible compact lattice in G. Let f(x) = gx, g = exp(X).
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Proposition 6. ([27]). Suppose that there is a factor G′ of G which
is not locally isomorphic to SO(n, 1) or SU(n, 1) and such that the
projection g′ of g to G is not quasiunipotent (i.e. sp(ad(g ′)) 6⊂ (S1))
then f is strongly u-transitive with exponential rate.

Exercise 11. Prove Proposition 2.

Hint. Improve Lemma 5 and show that for Anosov diffeomorpisms
∃c, n0 such that ∀l1, l2 ∈ E1

lj = clIj + (1 − c)lIIj

where

|lI1(A ◦ fN) − lI2(A ◦ fN)| ≤ ConstθN ||A||γ
and

lIIj =
∑

k

cjkljk

where fnjk ljk ∈ E1 for some njk and
∑

njk>N

cjk ≤ ConstθN .

(Use Lemma 4.) Use the arguments of Proposition 1 to complete the
proof. (This proof is taken from [43].)

Exercise 12. ([26]) (a) Let R ∈ SLd(Z) be such that Sp(R) does not
contain roots of unity. Let Γu be the sum of expanding eigenspaces of R
and Γcs be the sum of complimentary eigenspaces. Let π∗ : R

dΓ∗ denote
the corresponding projections. Prove that ∀λ ∈ Z

d

||πu(λ)|| ≥ Const

||λ||d .

Hint. Let P (x) = xk +
∑

j ajx
j be the minimal polynomial of R|Vcs

.

∀Q ∃r1 . . . rk−1, and q < Qk such that | rj

q
− aj| ≤ 1

qQ
. Let PQ(x) =

xk +
∑

j
rj

q
xj, then ||PQ(R)λ|| ≥ 1

Q
. Let v = πcsλ then

PQ(R)λ = PQ(R)(λ− v) + PQ(R)(v).

Take Q ∼ Const||λ|| . . .
(b) Use (a) to prove Proposition 5.

Exercise 13. Next exercise taken from [31] usually does not give an
optimal bounds but in case it applies its conclusions are sufficient for
all the applications described below.

Suppose that Ec is generated by the action ϕa of R
d such that f ◦ϕa =

ϕa ◦ f. Suppose that W u,W s ∈ C∞ and that ∃ vectorfields X1 . . .Xm ∈
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Eu, Y1 . . . Yn ∈ Es such that {Xj}, {Yj} and {∇Xj
Yk} generate TM.

Let f preserve smooth measure dx. Let V (A)(x) = A(fx) and

U(A) =

∫

0≤uj≤1

A(ψXu
x)du, S(A) =

∫

0≤sj≤1

A(ψYs
x)ds

where ψZ denote the flow generated by Z. Let Ccs(M) denote the space
of functions which are continuous with Lipschitz restrictions to W cs

and Cu(M) denote the space of functions which are continuous with
Lipschitz restrictions to W u Denote ||A||∞ = supM |A(x)|,

||A||s = lim sup
s→0

|A(ψY (s)x) − A(x)|
|s| ,

||A||u = lim sup
u→0

|A(ψX(u)x) − A(x)|
|u| ,

||A||0 = lim sup
a→0

|A(ϕax) − A(x)|
|a| .

Let Pn = V nUS. (a) Prove that

||PN
n A||∞ ≤ ||A||∞,

||PN
n A||0 ≤ ||A||0 + ConstN ||A||∞,

||PN
n A||s ≤ θN (||A||s +N ||A||∞ + ||A||0)

for some θ < 1.
(b) Prove that

∣

∣

∣

∣

∫

M

PN
n (A)(x)B(x)dx−

∫

(V nNA)(x)B(x)dx

∣

∣

∣

∣

≤ ConstN2
(

θN(||A||s + ||A||0 + ||A||∞)||B||∞ + ||A||∞||B||u
)

(c) Prove that ∃n0, c1, c2, such that ∀n ≥ n0 P2
n = c1In + (1 − c1)Jn

where In and Jn are Markov operators (i.e. A ≥ 0 implies I(A) ≥ 0,
J(A) ≥ 0 and I(1) = J(1) = 1) and In is an integral operator with
kernel bounded from below by c2.

(d) Prove that ∃θ̃ < 1 such that
∣

∣

∣

∣

∫

A(fNx)B(x)dx −
∫

A(x)dx

∫

B(x)dx

∣

∣

∣

∣

≤ Const||A||1||B||1θ
√

N .

Hint. Apply the previous estimates to the identity

A(fNx)B(x)dx =

∫

Ã(fN/3x)B̃(x)dx

where Ã = A ◦ fN/3, B̃ = B ◦ fN/3.
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(e) Deduce from (d) that ∀l ∈ Ē
∣

∣

∣

∣

l(A ◦ fN) −
∫

A(x)dx

∣

∣

∣

∣

≤ Const||A||1θ
√

N .

2.3. Singular foliations. As we saw above a crucial property of W u

is its absolute continuity. Here we show that W c need not be absolutely
continuous. We follow [40] with modifications of [15]. Let f : T

3 → T
3

be a skew product over Anosov diffeo of T
2. We assume that f has

accessibility property. Let ϕ be a diffeomorphism close to id and let
Fn = fnϕfn.

Proposition 7. Fn is partially hyperbolic, Ec(Fn) is integrable and
leaves of W c(Fn) are circles.

Proof. f is partially hyperbolic and W c(f) is C1. Therefore by [22]
there exists a neighborhood U(f) such that if {fj} is any sequence
with fj ∈ U , then

{fm ◦ · · · ◦ f2 ◦ f1}
is partially hyperbolic sequence and Ec({fj}) is integrable. But

Fn = f ◦ · · · ◦ f ◦ ϕ ◦ f · · · ◦ f. �

Let dϕ be given in the frame {eu, ec, es} by the matrix Q(x).

Theorem 3. Let λc(n, ν) denote the central Lyapunov exponent for Fn

invariant measure µ. Let

L(µ) =

∫

[ln(QuuQcc −QucQcu) − lnQuu] dµ(x).

(a) If f and ϕ preserve a smooth measure m then

lim
n→∞

λc(n,m) = L(m)

(b) In general if νn is any u-Gibbs state for Fn then λc(n, νn) converges
uniformly to L(µ) where µ is the u-Gibbs state for f.

Proof. (a) Fn has unstable vector of the form

vu(x) = eu(x) + zu(x)

and center-unstable bivector vuc of the form

vuc(x) = eu(x) ∧ ec + zuc(x).

Let λu(x, k) = ln ||df k(eu)||(x). Then

ln ||Fn(vu)|| = lnλu(x, n) + lnQuu(f
nx) + lnλu(ϕf

nx) +O(θn)

and

ln ||Fn(vuc)|| = lnλu(x, n)+ln(QuuQcc−QucQcu)(f
nx)+lnλu(ϕf

nx)+O(θn)
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for some θ < 1. Hence

λc(n,m) =

∫

[ln(QuuQcc −QucQcu) − lnQuu] (f
nx)dµ(x) = L(m)

since f preserves m;
The proof of (b) is similar taking into account Theorem 2 and Exer-

cise 2. �

Exercise 14. Show that ∃(f, ϕ) such that L(m, f, ϕ) 6= 0.

Hint. Take some x0 ∈ T
3 and choose a coordinate system ξ1, ξ2, ξ3

so that

Es(x0) =
∂

∂ξ1
Ec(x0) =

∂

∂ξ2
Eu(x0) =

∂

∂ξ3
.

Let β : R → R be a function of compact support. Define

ϕε,δ(ξ) = (Rδβ(||ξ||2/ε2)(ξ1, ξ2), ξ3)

where Rβ denotes a rotaion on angle β. Show that

L(m,ϕε,δ) ∼ −ε3δ2

∫ ∫ ∫

ξ2
1ξ

2
2(β

′(||ξ||2))2dξ1dξ2dξ3.

(See [40, 38]) for other proofs, all proofs proceed by using Taylor series
for sine and cosine etc.)

Applying Proposition 1 we obtain

Corollary 3. If L(µ) 6= 0 then for almost all x

lim
N→∞

1

N
ln ||dFN

n |Ec||(x) 6= 0.

Combining this corollary with [1, 4] we obtain

Corollary 4. If L(µ) 6= 0 then for large n Fn has unique u-Gibbs states
and its basin of attraction has total Lebesgue measure in M.

Lemma 6. If f, ϕ preserve a smooth measure m and L(µ) 6= 0 then
W c(Fn) is not absolutely continuous for large n.

Proof. Without the loss of generality we can assume that L(µ) > 0.
Let

Λ = {x : λc(x, Fn) > 0}.
Then m(Λ) = 1 but for any leaf W of W c mes(W

⋂

Λ) = 0. �

References to Subsection 2.3 Note that the construction of the
partially hyperbolic systems with singular central foliation does not use
anything beyond ergodic theorem and theory of invariant manifolds
(see [22].) In particular the results of Sections 1 and 2 are not needed.
(Cf. [3, 38] where non-ergodic examples with singular center are given.)
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However to understand the dynamics of these examples theory given
above is helpful. For more detailed description of this dynamics see
[1, 4, 15, 39, 40].

2.4. Fractional parts of linear forms. Here we will describe an ap-
plication of u-Gibbs states to number theory. This example is taken
from [33]. It will use translation on SLd(R)/SLd(Z), which is has finite
volume but is not compact. However Theorem 2 and Corollary 2 can
be extended to this case with little difficulty.

Consider a linear form of d− 1 variables:

Lα(m) =< α,m >=
d−1
∑

j=1

αjmj

with 1 ≤ mj ≤ N. All together we have N ∗ = Nd−1 points and we
ask how the set of fractional parts looks at scale 1

N∗
. In this subsection

we let [x] denote the fractional part of x. More precisely choose
some n and a set V ⊂ R

n with smooth boundary. Let ΛN(α, V ) be the
number of (n+ 1)-tuples such that m(1) . . .m(n + 1)

{N∗[Lα(m(j + 1)) − Lα(m(j))]} ⊂ V.

Theorem 4. ([33]) Suppose that h(α) is chosen randomly from T
d with

smooth probability density h(α). Then

∃ lim
N→∞

Prob

(

ΛN(α, V )

N∗ < s

)

= µ(s, V )

and this limit does not depend on h.

Proof. Let k(j) = m(j+1)−m(j).We deal with the event {N ∗Lα(k(j))} ∈
V. For each n−tuple {k(j)} let τN({k(j)}) denote the number of ways
we can represent k(j) = m(j + 1) −m(j). Let

Ms({k(j)}) = max
j
ms(j) − min

j
ms(j).

Ms({k(j)}) depends only on {k(j)} :

Ms({k(j)}) = max
a,b

b
∑

j=a

ks(j).

Then the number of ways we can represent ks(j) = ms(j + 1) −ms(j)
with 1 ≤ ms(j) ≤ N equals (N−Ms({k(j)}))+ where x+ = max(x, 0).
Thus

τN({k(j)}) =
d−1
∏

s=1

(N − Ms({k(j)}))+.
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The condition that all m(j) are different in terms of {k(j)} reads

(DIF ) ∀a, b
b
∑

j=1

k(j) 6= 0.

Thus

ΛN(α, V )

N
=

∑

ν(1)...ν(n)∈Z

DIF
∑

k(1)...k(n)∈Zd−1

∫

V

1

N∗

d−1
∏

s=1

(N−Ms({k(j)}))+

n
∏

j=1

δ (x(j) −N∗ (< α, k(j) > +ν(j))) dx(1) . . . dx(n) =

∑

ν(1)...ν(n)∈Z

DIF
∑

k(1)...k(n)∈Zd−1

∫

V

d−1
∏

s=1

(1−Ms({
k(j)

N
}))+

n
∏

j=1

δ (x(j) −N∗ (< α, k(j) > −ν(j))) dx(1) . . . dx(n).

Now let k̄(j) = (k(j), ν(j)). Let

M(N,α) =









1
N

. . . . . . 0
. . . . . . . . . . . .
0 . . . 1

N
0

0 . . . 0 N∗









M(α)

where

M(α1 . . . αd−1) =









1 . . . . . . 0
. . . . . . . . . . . .
0 . . . 1 0
α1 . . . αd−1 1









Let

(DIF∗) ∀a, b
b
∑

j=1

k̄(j) 6= 0.

We claim that for large N
∑DIF =

∑DIF∗ . Consider for example the
simplest case a = b, that is k(a) = 0 for some a. Then for large N

N∗(< α, k(a) > +ν(a)) = N ∗ν(a)

and this can not be coordinate of the point in V unless ν(a) = 0. Thus

ΛN(α, V )

N
∼
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DIF∗
∑

k̄(1)...k̄(n)∈Zd

∫

V

d−1
∏

s=1

(1−Ms({M(N,α)k̄(j)}))+

n
∏

j=1

δ(x(j)−(M(N,α)k̄(j))d)dx(1) . . . dx(n).

Let D(V,M) =

DIF∗
∑

k̄(1)...k̄(n)∈Zd

∫

V

d−1
∏

s=1

(1−Ms({Mk̄(j)}))+

n
∏

j=1

δ(x(j)−(Mk̄(j))d)dx(1) . . . dx(n).

Then ∀M̄ ∈ SLd(Z) D(V,MM̄) = D(V,M) since (DIF*) is SLd(Z) in-
variant. So D(V, ·) can be considered as a function on SLd(R)/SLd(Z).
Hence for large N

ΛN(α, V )

N∗ = DN(V,M(N,α)).

Now M(N,α) lie on the M(α)-orbit of

Φ(t) = diag(e−t, . . . e−t, e(d−1)t).

This flow is partially hyperbolic and W u consist of orbits of {M(a)},
a ∈ R

d−1. Thus Corollary 2 gives
∫

Td−1

h(α)1(D(V,Φ(t)M(α)) ≤ s)dα→
∫

SLd(R)/SLd(Z)

1(D(V,M) ≤ s)dM. �

References to Subsection 2.4. This example is taken from [33].
Other applications of u-Gibbs states to number theory are discussed in
[19, 41].
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3. Central Limit Theorem.

To give more application of uniqueness of u-Gibbs states we need
to make some assumptions about the convergence rate. Namely we
assume that f has unique u-Gibbs state µ and that there is a Banach
algebra B of Holder continuous functions such that for any A ∈ B for
any l ∈ Ē

|l(A ◦ fn) − ν(A)| ≤ a(n)||A||B
where

(7)
∑

n

a(n) <∞.

(It can be shown that (7) does not depend on the arbitrariness present
in the definition of Ē. Let A ∈ B be a function of zero mean (µ(A) = 0)
and let

(8) D(A) =
+∞
∑

n=−∞
µ(A(A ◦ fn)).

Theorem 5. Let x be chosen according to some l ∈ Ē then as n→ +∞
1√
n
Sn(A)(x) converges weakly to a Gaussian random variable with zero

mean and variance D(A).

Recall that a Gaussian random variable X has Laplace transform

φ(ξ) = E(eξX) = e
Dξ2

2 .

Hence

E(Xk) =

[

(

d

dξ

)k

φ

]

(0) =

{

0 if k is odd
Dm(2m)!

2mm!
if k = 2m

Let us compare this situation with the case of independent identically
distributed random variables. Let ζ1 . . . ζj . . . be independent, E(ζj) =
0, E(ζ2

j ) = D. Let Sn =
∑n

j=1 ζj. Then

E(

(

(

Sn√
n

)k
)

=
1

n
k
2

∑

(j1...js)(p1...ps):p1+···+ps=k

E(ζp1

1 . . . ζps

s ) =
∑

~j,~p

s
∏

l=1

E(ζpl

jl
).

Note that this product equals zero unless pl ≥ 2. From this it is easy to
see that the main contribution comes from the terms where all pl = 2.
Thus E(( Sn√

n
)k) → 0 if k is odd and if k = 2m then E(( Sn√

n
)2m) ∼ Dm

nm ×
(number of terms with all pl = 2). This number equals the number of
ways to chose 2m elements out of n so that each element appears ex-
actly twice. If the ordering is not important there would be about nm

possibilities. To take the ordering into account we need to multiply this
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by τm the number of ways to divide 2m elements into pairs. Recurrence

relation τm = (2m − 1)τm−1 implies τm =
∏m

j=1(2j − 1) = (2m)!
2mm!

. Thus

E(( Sn√
n
)2m) ∼ (2m)!Dm

2mm!
as required. Thus for independent random vari-

ables the Central Limit Theorem is proved by showing that the main
contribution to the moments comes from the terms where the elements
are divided into pairs of coinciding elements. In our situation A(f jx)
are weakly dependent rather then independent so the main contribu-
tion should come from the terms where the indices can be divided into
pairs so that the indices in the same pair maybe not coincide but are
close to each other.

To carry over the precise estimate we need a preliminary bound.

Lemma 7. Let Sn(A)(x) =
∑n−1

j=0 A(f jx). Then

(9) |l(Sk
n)| ≤ Constnm

where k = 2m or k = 2m+ 1.

Proof. We prove this result inductively. In fact, we establish slightly
more general inequality. Namely we show that (9) is true if Sn(A)(x) =
∑n−1

j=0 Aj(f
jx), where µ(Aj) = 0 and ||A||B are uniformly bounded. We

have

l(Sk
n) =

∑

j1...jk

l(
∏

q

Ajq
◦ f jq).

In case two indices here coincide, say jk−1 = jk we have

I =
∑

j1...jk−1

l((
k−2
∏

q=1

Ajq
◦ f jq)A2

jk−1
◦ f jk−1) =

∑

j1...jk−1

l((
k−2
∏

q=1

Ajq
◦ f jq)

[

(A2
jk−1

◦ f jk−1 − µ(A2
jk−1

)) + µ(A2
jk−1

)
]

=

µ(A2
jk−1

)
∑

j1...jk−1

l((
k−2
∏

q=1

Ajq
◦f jq)+

∑

j1...jk−1

l((
k−2
∏

q=1

Ajq
◦f jq)

[

(A2
jk−1

◦ f jk−1 − µ(A2
jk−1

))
]

By induction the first term is at most
∑

jk−1
Constnm−1 and in the

second term we have only k − 1 indices so this term is less then ei-
ther Constnm or Constnm−1 depending on the parity of k by inductive
hypothesis. Now we consider two cases.

(a) k = 2m is even. We have

l(S2m
n ) =

∑

j1...j2m

l(
∏

q

Ajq
◦ f jq) =

∑

r

Θr,
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where Θr denotes the sum of the terms where the second largest index
equals r. Since we do not have to worry about the term with coinciding
indices we get

l(S2m
n ) =

n−1
∑

r=1

l

(

S2m−2
r Ar ◦ f r

(

n−1
∑

p=r+1

Ap ◦ f p

))

+O(nm) =
∑

r

Θ̄r+O(nm).

Now it suffices to estimate this sum for l ∈ E1 thus l(A) =
∫

S
ρ(x)A(x)dx.

Divide f rS = (
⋃

tKt)
⋃

Z whereKt are Dirichlet cells and Z ⊂ ∂r0(f
rS)

so that mes(f−rZ) ≤ Constθr for some θ < 1. Let ct =
∫

f−rKt
ρ(x)dx,

then
∫

f−rKt

ρ(x)S2m−2
r Ar(f

rx)
∑

p

Ap(f
px)dx =

∫

Kt

ρt(y)S
2m−2
r (f−ry)Ar(y)

∑

p

Ap(f
p−ry)dy.

Let Γt = supKt
S2m−2

r + 1 and

ρ̄t(y) = ρt(y)S
2m−2
r (f−ry)Ar(y)

Γt
.

Lemma 8. ρ̄t is uniformly Holder continuous.

Proof. Since ρt and Ar are uniformly Holder continuous we only need
to estimate

∣

∣S2m−2
r (f−ry1) − S2m−2

r (f−ry2)
∣

∣ =

∣

∣Sr(f
−ry1) − Sr(f

−ry2)
∣

∣

∣

∣

∣

∣

∣

∑

j

Sj
r(f

−ry1)S
2m−3−j
r (f−ry2)

∣

∣

∣

∣

∣

≤

Const sup
Kt

|S2m−3
r |

∣

∣Sr(f
−ry1) − Sr(f

−ry2)
∣

∣

≤ ConstΓt

r
∑

q=1

∣

∣Aq(f
q−ry1) − Aq(f

q−ry2)
∣

∣

≤ ConstΓt

r
∑

q=1

dγ(f q−ry1, f
q−ry2) ≤ ConstΓtd

γ(y1, y2)
r
∑

q=1

1

λ
γ(q−r)
5

. �

By Lemma 8
∣

∣

∣

∣

∣

∑

t

ct

∫

Kt

∑

p

ρt(y)A(y)Sr(y)Ap(f
p−ry)dy

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

t

ctΓt

∫

Kt

∑

p

ρ̄t(y)Ap(f
p−ry)dy

∣

∣

∣

∣

∣

≤
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∑

t

ctΓt

∑

r

a(p− r) ≤ Const
∑

t

ctΓt.

Now

Γt =

∫

Kt

ρt(y)S
2m−2
r (f−ry)dy +O

(∣

∣S2m−3
r (f−ry)

∣

∣

)

.

Since |S2m−3
r | ≤ (S2m−2

r + 1) we obtain
∑

t

ctΓt =

∫

S

ρ(x)S2m−2
r (x)dx+O(1) = O(nm−1)

by induction hypothesis. Hence

l(S2m
n ) ≤ Const

n−1
∑

r=0

nm−1 ≤ Constnm.

This completes the proof for even k.
In the case k the proof is odd is the same but now r should be the

largest index. �

Lemma 9. Let Sn =
∑n−1

j=0 A(f jx), then ∀l ∈ Ē

l(S2m
n )

nm
∼ Dm(2m)!

2mm!
.

Proof.

l(S2m
n ) =

∑

j1...j2m

l(
∏

q

Aq(f
qx)).

Let βs be the sum of terms where the difference between the largest
and the second largest term is exactly s. Thus

l(S2m
n ) =

∑

s

βs.

Lemma 10. ∀ε ∃n0 such that ∀n
∑

s≥n0

βs ≤ εnm.

Proof. In the proof of Lemma 9 we saw that
∑

s≥n0

βs ≤ Const
∑

s≥n0

a(s)nm. �

Let us now estimate βs for fixed s. Let βs,s′ denote the sum of the terms
from βs where the difference between the second and the third largest
indices equals s′.

Lemma 11.

∀s′ lim
n→∞

βs,s′

nm
= 0.
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Proof. βs,s′ can be bounded by

l(
∑

j1...j2m−3

∏

q

Ajq
(f jqx)

∑

j2m−2

B(f j2m−2x))

where B(x) = A(x)A(f s′x)A(f s+s′x). Hence for fixed s′ βs′ is O(nm−1)
by Lemma 9. �

Thus for any fixed n0

βs ∼
∑

s′≥n0

βs,s′.

Now let βs,s′(r) denote the sum of the terms where the second largest
index is r. Since there are 2m(2m− 1) ways to choose the largest and
second largest indices we have for s > 0

∑

s′≥n0

∑

r

βs,s′(r) ∼ 2m(2m− 1)
∑

r

l(S2m−2
r (x)A(f rx)A(f r+s)) ∼

2m(2m− 1)µ(A(A ◦ f s))
∑

r

l(S2m−2
r (x))+

2m(2m− 1)
∑

r

l(S2m−2
r (x)

[

A(f rx)A(f r+s) − µ(A(A ◦ f s))
]

).

Now in the second sum we have 2m−1 different functions so by Lemma
9 it is O(nm−1). The first term can be computed by induction

2m(2m− 1)µ(A(A ◦ f s))
∑

r

l(S2m−2
r (x)) ∼

2m(2m− 1)µ(A(A ◦ f s))
∑

r

Dm−1(2m− 2)!

2m−1(m− 1)!
rm−1 ∼

2(2m−1)µ(A(A◦f s))nmD
m−1(2m− 2)!

2m−1(m− 1)!
= 2nmDm−1 (2m− 1)!

2m−12m−1
µ(A(A◦f s)).

Likewise if s = 0 then the largest and second largest index coincide so
we get

β0 ∼ nmDm−1 (2m− 1)!

(m− 1)!2m−1
µ(A2).

Since
(2m− 1)!

(m− 1)!2m−1
=

(2m)!

m!2m

we obtain

l(S2m) ∼ (2m)!

2mm!
Dm−1

[

µ(A)2 +

n0
∑

s=1

µ(A(A ◦ f s)) + on0→∞(1)

]

.
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The term in brackets can be rewritten as
∑

|s|≤n0

µ(A(A ◦ f s)) + on0→∞(1).

Letting n0 → ∞ we obtain the statement required. �

Exercise 15. Let wn(t) = 1√
n

∑n−1
j=0 A(f jx). Show that as n → ∞

wn(t) converges to Brownian Motion w(t). That is, for

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn

w(tj+1)−w(tj) and w(tk+1)−w(tk) are independent Gaussian random
variables, w(t) has mean 0 and variance Dt.

Exercise 16. Let M be a compact manifold of variable negative cur-
vature, M̃ be a covering such that M = M̃/Z. Choose a closed one

form ω and a reference point q0 and mark position of point q ∈ M̃ by
x(q) =

∫

q0q
ω. Let

Mn = {q : n ≤ x(q) ≤ n + 1}

and

Qn = {(q, v) : q ∈Mn and ||v|| = 1}.
(a) Suppose that (q, v)(0) is chosen Lebesgue uniformly on Q0. Let

q(t) be the geodesic defined by (q, v). Let

wn(t) =
1√
n
x(q(tn)).

Show that as n→ ∞ wn(t) converges to Brownian Motion.
(b) Let ρ(s) be a smooth positive function with compact support on

R. Suppose that we put on each Qn Nρ(
n√
M

) points independently and

Lebesgue uniformly. Let ρN,M(t, x) be the number of points in Q[x
√

M ]

at the moment tM. Show that if M,n → ∞ so that N√
M

→ ∞ then
ρN,M (t,x)

N
→ ρ(t, x) where

∂tρ = D∆ρ, ρ(0, x) = ρ(x).

References to Section 3. Our exposition is taken from [16] which
follow [23]. Other approaches to Central Limit Theorem could be found
in [30, 21, 34]. Applications to hydrodynamic equations (cf. Exercise
16) are discussed in [6].
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Appendix A. Random partially hyperbolic systems.

Here we discuss what is analogue of partial hyperbolicity for systems
with noise. Of course one can define uniform partial hyperboplicity in
terms of existence of invariant cones. However, if we are interested in
statistical properties when a weaker analogue of non-uniform partial
hyperbolicity which we describe below. We follow [18]. Let M be
a compact manifold and consider a system of stochastic differential
equations

(10) dx = Y (x)dt +

d
∑

j=1

Xj(x) ◦ dwj(t)

where wj are independent Brownian Motions. We impose some non-
degeneracy conditions. Namely let

d(x, v) = Ỹ (x, v)dt+

d
∑

j=1

X̃j(x, v) ◦ dwj(t)

be the induced flow on TM. We require

(A) ∀(x, v) Lie({X̃j}) = T (TM)

and
(B) ∀x 6= y Lie({(Xj(x), Xj(y))}) = TM × TM.

Let λ be the largest Lyapunov exponent of (10).

Proposition 8. ([10]) For generic d-tuple {Xj} λ 6= 0.

Thus from now on we assume that

(C) λ 6= 0.

As we will explain below (A)–(C) can serve as a substitute for partial
hyperbolicity.

As in the deterministic case one can define SRB measures by con-
sidering the iterations of Lebesgue measure on a submanifold. In the
deterministic partially hyperbolic case one can take any submanifold
transversal to Ec ⊕ Es. However in the random case directions of the
subleading growth are random so they will be transversal to a deter-
ministic direction with probability one.

Proposition 9. ∃νt(ω) such that for any curve γ with probability one
∀A ∈ C(M)

lim
s→−∞

∫

γ

A(xt)dxs → νt(A).
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In fact one has exponential convergence to this random SRB state.

Proposition 10. [18] ∀A ∈ Cγ(M)
∣

∣

∣

∣

∫

γ

A(xt)dx0 − νt(A)

∣

∣

∣

∣

≤ C({w})||A||γe−δt.

Now we have to distinguish between λ > 0 and λ < 0 cases.

Proposition 11. [28] If λ < 0 then ∃y(t, w) such that νt = δy(t).

Consider B(x, t, w) = A(xt) − νt(A).

Proposition 12. Let x0 be chosen uniformly from γ. Then for almost
any realization of {wj}

∫ t

0
B(x, s, w)ds√

t

converges weakly as t→ ∞ to a normal random variable.

The proof of this result is similar to the proof of Theorem 5 us-
ing Proposition 10. The proof of Proposition 10 works by computing
the varaince of

∫

γ
A(xt)dx0. This variance involves two point process

(x, y) → (xt, yt). One shows that (A)–(C) implies the exponential con-
vergence of Lebesgue measure on γ × γ. In case λ < 0 in converges
to the ergodic invariant measure on diagonal and in case λ > 0 off-
diagonal, since λ > 0 implies that if xt is close to yt they are likely to
diverge again.

Hence even though partial hyperbolicity involves the strong topologi-
cal restrictions to underlying manifold the same picture can be obtained
for arbitrary system subject to a small random noise.



LECTURES ON U-GIBBS STATES. 31

2. Dependence on parameters.

2.1. Perturbation expansions. Now we know several examples of
open sets having unique u-Gibbs state, so the natural question is how
they depend on parameters. One of the first results in this direction is
the following.

Theorem 6. ([25]) In the space of Anosov diffeomorphisms ∀A ∈
C∞(M) the map f → µSRB(A) is C∞.

[25] also proves the similar result for Anosov flows. Let me explain
the proof of a weaker statement that the map f → µSRB(A) is C1 and
various generalizations of this. We know from subsection 2.2 that if K
is Dirichlet cell then

∫

K
ρ(x)A(fnx)dx converges to µSRB(A) exponen-

tially fast. It is easy to see that the same holds if instead of requiring
that K ∈ Eu we ask only that K is a submanifold transversal to Es.
So if fε is a one-parameter family of Anosov diffeos we can get a good
approximation of µSRB(fε)(A) by looking at

∫

K
ρ(x)A(fn

ε x)dx where ρ
is a density of compact support inside K. Now given x fnx and fn

ε x
are far apart but by shadowing lemma ∀x, ∀n ∃yn ∈ K such that fnyn

is close to fn
ε . To define such yn uniquely choose a smooth distribution

Ẽs C0-close to Es and require that fn
ε x = expfnyn

(Vn) where Vn ∈ Ẽs.
Vn’s then satisfy

(11) Vn+1 = πẼs(df(Vn) + εX(fn+1yn)) + H.O.T.

where πẼs is the projection to Ẽs along Eu and X + dfε

dε
. Let Q : Ẽs →

Ẽs denote πẼs ◦ df and

Qn = Q(fn−1x) . . . Q(fx)Q(x).

Solving (11) we obtain

Vn+1 = ε

n
∑

j=1

Qj(f
−jzn+1)[Xs] + H.O.T.

where zn = fnyn, Xs = πẼs
X. Thus as n→ ∞ Vn+1 ∼ εV (zn+1) where

V (z) =
∞
∑

j=1

Qj(f
−jz)[Xs]

Take A such that µ(A) = 0 then
∫

K

ρ(x)A(fn
ε x)dx =

∫

K

ρ(x)A(zn)dx+

∫

K

ρ(x)[A(fn
ε x) − A(zn)]dx.
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Now dx = dx
dyn
dyn. But y0 = x so

dx

dyn

=
dy0

dyn

=
n−1
∏

j=0

(

dyj−1

dyj

)

.

Now

f j+1yj+1 ∼ expfj+1yj
πEu (εX + df(Vj))

where πEu denotes projection to Eu along Ẽs. Thus

(12)
d(f j+1yj+1)

d(f j+1yj)
∼ 1 + div[εX(f jyj) + df(Vj)]

Now
dyj+1

dyj
=
d(f j+1yj+1)

d(f j+1yj)

[

dyj+1

df j+1yj+1
: dyj+1df

j+1yj

]

.

Note that the second term would be equal to one both K and f j+1

were equipped with canoniacal density. Then divergence in (12) also
would be with respect to canoniacal density so that

dy0

dyn

∼ 1 − ε
n−1
∑

j=0

divcan(πEudf(V ) +X)(f−jzn)

from this we get
∫

K

A(fn
ε x)ρ(x)dx−

∫

K

A(fnyn)ρ(x(yn))dyn = ε

∫

K

(∂VA)◦fnρ(x(yn))dyn−

ε
∑

j

∫

K

divcan [X + df(V )] ◦ f−jA(fnyn)ρ(x(yn))dyn + H.O.T..

Choosing n ∼ Const ln( 1
ε
) we get

d

dε
µSRB(A) = µ(∂VA) −

∞
∑

j=1

µ(A [divcan(X + df(V )] ◦ f−j).

This calculation can be extended to a more general situation giving
some information about u-Gibbs states when we do not know unique-
ness.

The example we consider is abelian Anosov actions. These are par-
tially hyperbolic systems such that Ec is tangent to the orbits of R

d-
action ϕa : M → M such that fϕa = ϕaf. f is called Anosov element
of the action. One example of abelian Anosov actionis time one map
of an Anosov flow.
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Theorem 7. ([17]) Suppose that f is an Anosov element in an abelian
Anosov action and assume that ∀m ∃k(m) such that ∀l ∈ Ē ∀A ∈
Ck(M)

|l(A ◦ fn) − µ(A)| ≤ Const||A||Ck(M)

1

nm

(cf. Subsection 2.2.) Then ∃k and a linear functional ω : Ck(M) → R

such that if µε is any u-Gibbs state for fε then

µε(A) − µ(A) = εω(A) + o(ε||A||k).
Corollary 5. ∀δ > 0 existsε0 such that ∀ε ≤ ε0 for Lebesgue almost
all x ∃n = n(x) such that for n ≥ n(x)

∣

∣

∣

∣

Sn(A)(x)

n
− ν(A) − εω(A)

∣

∣

∣

∣

≤ εδ.

Proof. This follows immediately from Proposition 1. �

Exercise 17. Let f : M → M be an Anosov diffeomorphism. Show
that there is a neighbourhood U(f) such that the following holds. Let
{fj} be a sequance with fj ∈ U and let

Fk,n = fn ◦ . . . fk+1 ◦ fk.

Prove that

(a) ∃µn(A) = lim
k→−∞

∫

A(Fk,n(x))dx.

(b) ∀A, n the map {fj} → µn({fj} is C1.

Exercise 18. ∗ Prove Theorem 6.
(a) ([11]) Let ϕε be the conjugation fεϕε = ϕεf. Show that ∀x the

map ε→ ϕε(x) is smooth.
(b) Use (a) and the fact that the SRB measure is the unique measure

satisfying

h(µε) =

∫

ln det(dfε|Eu(ε))(x)dµε

to prove Theorem 6.

Exercise 19. [17] Let fε be a one-parameter family such that f0 is a
time one map of a geodesic flow on a surface of negative curvature.

(a) W c(f0) and W c(fε) are conjugated. Show that this conjugation
ϕε can be chosen so that ∀x the map ε→ ϕε(x) is smooth.

(b) Use (a) to show that ∀x the map ε→ Ec(x, ε) is differentiable at
0.
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(c) Use (b) and the fact that Eu ⊕Es(f0) is c∞ to show that there is
a quadratic form c(X) such that if µε is a u-Gibbs state for fε then

λc(µε) ∼ c(
dfε

dε
)ε2.

(d) Show that c is not identically equal to zero.

Exercise 20. ([5]) Let M = H
2/Γ where Γ is a cocomapct lattice. Con-

sider a particle moving in a constant electric field subject to a Gaussian
thermostat. The equation of motion of the particle lifted to H

2 is given
in the upper halfplane model by

x′ = y2px y′ = y2py

p′x = Ex −
pxEx + pyEy

p2
x + p2

y

px p′y = −y2(p2
x + p2

y) + Ey −
pxEx + pyEy

p2
x + p2

y

py

where Ex + iEy = εψ(z) where ψ(z) is homomorphic in H
2 and

∀γ(z) =
az + b

cz + d
∈ Γ ψ(γ(z)) = (cz + d)2ψ(z).

Let M̃ be a covering such that M = M̃/Z.
(a) In the notation of Exercise 16 show that for Lebesgue almost all

x

∃d(ε) = lim
t→∞

x(q(ε, t))

t
and ∃d = lim

ε→0

d(ε)

ε
.

(b) Let initial positions of particles be distributed as in Exercise 16(b)
with ρ(s) ≡ 1, N ≡ 1. Let J(ε, n, T ) denote the (algebraic) number of
particle which have crossed Mn up to time T that is J(ε, n, T ) = Card(
particles such that q(ε, 0) < n, q(ε, T ) > n + 1) − Card( particles such
that q(ε, 0) > n+ 1, q(ε, T ) < n). Deduce from (a)

∃j(ε) = lim
T→∞

J(ε, n, T )

T
and ∃j = lim

ε→0

j(ε)

ε
.

2.2. Conclusion. u-Gibbs states play an important role in the study
of statistical properties of partially hyperbolic systems, there are sev-
eral situations where they can be computed explicitly and they are
stable with respect to changes of parameters. Thus if we get some
information in the model which involves partially hyperbolic systems
when it persists under the vagueness coming from the model construc-
tion. However there are still many open questions about u-Gibbs states
of general partially hyperbolic systems especially in higher dimensions
so it is an interesting area of research.

References to Section 2. Results about the smooth dependence
of Gibbs states for Anosov systems and some applications are discussed
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in [24]. The expression for the first derivatives we derive here is taken
from [36]. Applications of differentiability to statistical mechanics can
be found in [37].
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