1. $[\mathbf{2 0 + 2 5}]$ Any integer n is either a multiple of 3 in which case $n=3 m$ for some integer m or has a form $n=3 m+1$ or $n=3 m+2$.
Let $\{X(t), t \geq 0\}$ be a pure birth continuous time Markov chain. Assume that

$$
\begin{gathered}
P\{\text { an event occurs in }(t, t+h) \mid X(t)=3 m\}=\lambda_{0} h+o(h) \\
P\{\text { an event occurs in }(t, t+h) \mid X(t)=3 m+1\}=\lambda_{1} h+o(h) \\
P\{\text { an event occurs in }(t, t+h) \mid X(t)=3 m+2\}=\lambda_{2} h+o(h)
\end{gathered}
$$

and the probabilities that more than one event occurs are $o(h), h \rightarrow 0$.
(i) Derive the differential equations for

$$
\begin{gathered}
P_{0}(t)=P\{X(t)=3 m \text { for some } m\} \\
P_{1}(t)=P\{X(t)=3 m+1 \text { for some } m\} \\
P_{2}(t)=P\{X(t)=3 m+2 \text { for some } m\}
\end{gathered}
$$

(ii) Find the stationary distribution $\left\{p_{0}=\lim _{t \rightarrow \infty} P_{0}(t), p_{1}, p_{2}\right\}$.
2. [20] Let $\left\{X_{i}(t),: t \geq 0\right\}$ be a Poisson process with $X_{i}(0)=0$ and rate $\lambda_{i}, i=1,2$.
Prove that if $\lambda_{1}>\lambda_{2}$, then for any $N \geq 1$ and any $t>0$

$$
P\left\{X_{1}(t) \geq N\right\}>P\left\{X_{2}(t) \geq N\right\}
$$

3. [15] Let $\left\{X_{n}, n=0,1,2, \ldots\right\}$ be a discrete time Markov chain with a finite state space S and a transition matrix P.
Show that if the chain is irreducible with one aperiodic recurrent class, then for some m all the elements of P^{m} are positive.
4. $[\mathbf{1 0}+\mathbf{1 0}]$ Let $\{X(t), Y(t)\}$ be two independent Poisson processes.
(i) Prove or disprove that $Z(t)=\sqrt{X(t)+Y(t)}$ is a Markov process.
(ii) Set $V(t)=|X(t)-Y(t)|$. Find if the distribution of $V(t+h)$ is determined by the value of $V(t)$ for small $h, h \rightarrow 0$. Prove or disprove that $V(t)$ is a Markov process.
