1. Let \(T : P_3 \to \mathbb{R}^2 \) be the function that takes a polynomial \(p(x) \) to the vector \(\begin{bmatrix} p(1) \\ p(-1) \end{bmatrix} \).

(a) (Four points) Show that \(T \) is a linear transformation.

Solution. There are two things we have to check. First, does \(T \) break up over addition? It does, because if \(p \) and \(q \) are two polynomials, then
\[
T(p+q) = \begin{bmatrix} (p+q)(1) \\ (p+q)(-1) \end{bmatrix} = \begin{bmatrix} p(1) + q(1) \\ p(-1) + q(-1) \end{bmatrix} = \begin{bmatrix} p(1) \\ p(-1) \end{bmatrix} + \begin{bmatrix} q(1) \\ q(-1) \end{bmatrix} = T(p) + T(q).
\]

Second, does \(T \) respect scaling? Again, yes, because if \(p \) is a polynomial and \(c \) is a scalar, then
\[
T(cp) = \begin{bmatrix} (cp)(1) \\ (cp)(-1) \end{bmatrix} = \begin{bmatrix} cp(1) \\ cp(-1) \end{bmatrix} = c \begin{bmatrix} p(1) \\ p(-1) \end{bmatrix} = cT(p).
\]

(b) (One point) Find a nonzero vector in the kernel of \(T \). (I don’t want a spanning set for the kernel. Just a single vector is fine.)

Solution. We’re looking for an element in the domain, \(P_3 \), which is taken to the zero vector in \(\mathbb{R}^2 \). Elements of \(P_3 \) are polynomials, and we’ll get \(\vec{0} \) exactly when \(p(1) = 0 \) and \(p(-1) = 0 \). Thus we want a polynomial which has roots at 1 and \(-1\). One possibility, then, is \(p(x) = (x-1)(x+1) = x^2 - 1 \). There are many other answers.

2. (Five points) Suppose \(A \) is an \(n \times n \) matrix. Consider the set
\[
W = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = 5\vec{v} \}.
\]
Show that \(W \) is a subspace of \(\mathbb{R}^n \).

Solution. The condition we have to look for is “does multiplication by \(A \) count as multiplication by 5?” With that in mind, there are three things to check. First, is the zero vector in \(W \)? Yes—it satisfies the condition, since
\[
A\vec{0} = \vec{0} = 5 \cdot \vec{0},
\]
so multiplication by \(A \) counts as multiplication by 5. Next, closure under addition. Suppose that \(\vec{v} \) and \(\vec{w} \) are in \(W \). Then is \(\vec{v} + \vec{w} \) in \(W \)? Well, we see what happens if we multiply by \(A \):
\[
A(\vec{v} + \vec{w}) = A\vec{v} + A\vec{w} = 5\vec{v} + 5\vec{w} = 5(\vec{v} + \vec{w})
\]
(the middle = is because \(\vec{v} \in W \) and \(\vec{w} \in W \)). So multiplication by \(A \) counts as multiplication by 5, and \(W \) is closed under addition. Finally, is it closed under scaling? Suppose \(\vec{v} \in W \) and \(c \) is any scalar. We get
\[
A(c\vec{v}) = c(A\vec{v}) = c(5\vec{v}) = 5(c\vec{v}),
\]
so again we could replace the \(A \) with a 5, completing the checks.