Write legibly and show all work. No partial credit can be given for an unjustified, incorrect answer. Put your name in the top right corner.

Special instruction. I decided that if I made you do both of these questions this quiz would take forever. So I ask that you only do one of the two of them. I’ll write up solutions to both.

1. (Zero or ten points) Diagonalize the matrix

\[A = \begin{bmatrix} 0 & 3 \\ -2 & 5 \end{bmatrix}, \]

that is, find a diagonal matrix \(D \) and an invertible matrix \(P \) so that \(A = PDP^{-1} \).

Solution. The characteristic polynomial of this matrix is

\[(-\lambda)(5 - \lambda) + 6 = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3), \]

so the eigenvalues are 2 and 3. We now need eigenvectors for each of the eigenvalues. Those come from the null space of \(A - \lambda I \). For \(\lambda = 2 \), we get

\[A - 2I = \begin{bmatrix} -2 & 3 \\ -2 & 3 \end{bmatrix} \]

which corresponds to the equations \(-2x_1 + 3x_2 = 0, x_2 \) free. We could use \(\begin{bmatrix} 3/2 \\ 1 \end{bmatrix} \) or \(\begin{bmatrix} 3 \\ 2 \end{bmatrix} \) as our vector in the null space here. Next

\[A - 3I = \begin{bmatrix} -3 & 3 \\ -2 & 2 \end{bmatrix} \]

which corresponds to \(x_1 = x_2 \) after dividing by three, so \(\begin{bmatrix} 1 \end{bmatrix} \) is the natural choice. The columns of \(P \) are the eigenvectors and \(D \) is the diagonal matrix of eigenvalues, so we get

\[P = \begin{bmatrix} 3/2 & 1 \\ 1 & 1 \end{bmatrix} \]

and

\[D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}. \]
2. (Zero or ten points) Let T be the transformation $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ whose standard matrix is
\[
\begin{bmatrix}
-3 & -2 \\
8 & 5
\end{bmatrix},
\]
and let B be the basis $\{ \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \}$ for \mathbb{R}^2. Determine the matrix $[T]_B$, the matrix for T in the basis B. Put another way, fill in the question mark in the following diagram, where the top row is in the standard basis and the bottom row is in the basis B:

\[
\begin{array}{ccc}
\mathbb{R}^2 & \xrightarrow{\begin{bmatrix} -3 & -2 \\ 8 & 5 \end{bmatrix}} & \mathbb{R}^2 \\
\begin{bmatrix} \frac{1}{2} & 1 \end{bmatrix} & P^{-1} & P \begin{bmatrix} -1 & 1 \\ -1 \end{bmatrix} \\
\mathbb{R}^2 & \xrightarrow{?} & \mathbb{R}^2
\end{array}
\]

Solution. There are a couple of ways to do this. The most literal way is to say that the columns of $[T]_B$ are $T\vec{b}_1$ and $T\vec{b}_2$, each written in basis B. So since
\[
T\vec{b}_1 = \begin{bmatrix} -3 & -2 \\ 8 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix},
\]
and the right side of this equation in basis B is $\begin{bmatrix} \frac{1}{2} \end{bmatrix}_B$, the first column of the matrix $[?]$ is going to be $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$. Similar logic says that because
\[
T\vec{b}_1 = \begin{bmatrix} -3 & -2 \\ 8 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix},
\]
and $\begin{bmatrix} -1 \end{bmatrix} = 2\vec{b}_1 + \vec{b}_2$, the second column of the matrix is going to be $\begin{bmatrix} ? \end{bmatrix}$. Therefore
\[
[T]_B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.
\]

There is another way. The matrix $[?]$ is supposed to take us from the bottom left \mathbb{R}^2 in the diagram to the bottom right \mathbb{R}^2. The diagram offers us another way to get from the same place to the same place: we can go up (against the flow of the P^{-1} arrow), then across (using the standard matrix), then down (against the flow of the P arrow). Going against the flow is doing the inverse. So we’re saying first do P, then do $\begin{bmatrix} -3 & -2 \\ 8 & 5 \end{bmatrix}$, then do P^{-1}. Matrix multiplication is from right to left, so we get
\[
[?] = P^{-1}TP = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & -2 \\ 8 & 5 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}.
\]
If you do this matrix multiplication you again come to $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.