No review sheet can cover everything that is potentially fair game for an exam, but I tried to hit on all of the topics with these questions, as well as show you some of the different kinds of things that I could ask.

1. Explain what it means for a matrix to be invertible. (I think this is basically the only new definition we have for this exam.)

 Solution. A square matrix (say $n \times n$) A is invertible when there is another $n \times n$ matrix C which makes the equations $AC = I_n$ and $CA = I_n$ simultaneously hold.1

2. Find the inverse of the matrix

 \[
 \begin{pmatrix}
 2 & 1 & 0 \\
 9 & 1 & 1 \\
 0 & -3 & 1
 \end{pmatrix}
 \]

 Solution. I’ll add in some more detail later, but the answer is

 \[
 \begin{pmatrix}
 -4 & 1 & -1 \\
 9 & -2 & 2 \\
 27 & -6 & 7
 \end{pmatrix}
 \]

3. Find a nonzero 2×2 matrix B so that

 \[
 \begin{pmatrix}
 1 & 2 \\
 2 & 4
 \end{pmatrix}
 B = 0.
 \]

 Solution. There’s two ways I can think of to do this one. The first is the plug-and-chug method: Let’s just write $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$, and then do the matrix multiplication:

 \[
 \begin{pmatrix}
 1 & 2 \\
 2 & 4
 \end{pmatrix}
 \begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
 \end{pmatrix}
 = \begin{pmatrix}
 b_{11} + 2b_{21} & b_{12} + 2b_{22} \\
 2b_{11} + 4b_{21} & 2b_{12} + 4b_{22}
 \end{pmatrix}.
 \]

 Now set those entries equal to zero and see what equations we get. For instance, in the top corner we have $b_{11} + 2b_{21} = 0$, so $b_{11} = -2b_{21}$. It turns out that the bottom left entry gives the same condition. Similarly, both of the entries in the right column tell us that $b_{12} = -2b_{22}$. So okay, with nothing better to do let’s just throw some values out there, like $b_{21} = b_{22} = 1$. Then $b_{11} = b_{12} = -1$, and so our matrix B is $\begin{pmatrix} -2 & -2 \\ -1 & 1 \end{pmatrix}$.

 Sure enough,

 \[
 \begin{pmatrix}
 1 & 2 \\
 2 & 4
 \end{pmatrix}
 \begin{pmatrix}
 -2 & -2 \\
 1 & 1
 \end{pmatrix}
 = \begin{pmatrix}
 0 & 0 \\
 0 & 0
 \end{pmatrix}.
 \]

 The second way produces the same matrix but involves a bit more forethought. Recall that the columns of a product AB look like $A\vec{v}_1$, $A\vec{v}_2$, and so on. So if we can find a vector for which $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \vec{v} = \vec{0}$, then if we use that vector as every column of B, then we’ll get the zero matrix out of the product AB. If we try to solve that matrix equation we’re lead to the augmented matrix

 \[
 \begin{pmatrix}
 1 & 2 & 0 \\
 2 & 4 & 0
 \end{pmatrix}
 \]

1There are other things equivalent to being invertible—for instance, the map $\vec{x} \mapsto A\vec{x}$ must be injective and surjective, or A must have a pivot in each row and each column, etc.. But the meaning of invertibility is originally that the matrix has an inverse.
and consequently the condition \(x_1 = -2x_2 \) that we had before. \(x_2 \) is a free variable, so setting it equal to 1 recovers the vector \(\vec{v} = [-2, 1] \) and thus the answer from the previous paragraph.

4. (a) Find the \(LU \)-factorization of the matrix

\[
A = \begin{bmatrix}
-1 & 1 & 0 \\
-1 & 0 & 7 \\
2 & 7 & -1 \\
\end{bmatrix}.
\]

(b) Use your answer from part (a) to solve the system \(A\vec{x} = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} \).

Solution. I owe you more detail here, but so that the answer is available it’s

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
-2 & -9 & 1 \\
\end{bmatrix} \begin{bmatrix}
-1 & 1 & 0 \\
0 & -1 & 7 \\
0 & 0 & 62 \\
\end{bmatrix}.
\]

The vector equation has the solution \(\vec{x} = [-3, 1, 0] \).

5. Find the cofactor \(C_{43} \) for the matrix

\[
\begin{bmatrix}
2 & 1 & 3 & 0 \\
0 & 3 & 4 & 0 \\
1 & 0 & 1 & 2 \\
1 & 3 & 0 & -2 \\
\end{bmatrix}.
\]

Solution. You strike out the fourth row and third column, then multiply by \((-1)^{4+3}\) and take the determinant. So you get

\[
-\det \begin{bmatrix}
2 & 1 & 0 \\
0 & 3 & 0 \\
1 & 0 & 2 \\
\end{bmatrix} = -2 \det \begin{bmatrix}
2 & 1 \\
0 & 3 \\
\end{bmatrix} = -12,
\]

where the first step is what becomes of doing the determinant by performing a cofactor expansion down the third column.

6. Write down a \(4 \times 4 \) elementary matrix that represents each of the following row operations:

(a) Replace \(R_3 \) with \(R_3 - 3R_1 \).
(b) Scale \(R_2 \) by a factor of 3.
(c) Swap rows 1 and 4.
(d) Replace \(R_1 \) with \(4R_4 + R_1 \).

Solution. Man, I hope I get these right...
(a) \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]. We replaced R3, so the action is in the third row.

(b) \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\].

(c) \[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\].

(d) \[
\begin{bmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\].

7. Find the volume of the parallelepiped in \mathbb{R}^3 whose sides are determined by the vectors $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$.

Solution. Since we’re given the sides of the parallelepiped as vectors, the answer will be the absolute value of the determinant of the matrix with those vectors as columns. I’ll do a cofactor expansion across the first row:

$$
\begin{vmatrix}
2 & 2 & 0 \\
0 & 3 & 2 \\
1 & 0 & 2
\end{vmatrix} = 2 \begin{vmatrix} 3 & 2 \\ 0 & 2 \end{vmatrix} - 2 \begin{vmatrix} 0 & 2 \\ 1 & 2 \end{vmatrix} = |12 + 2| = |14|.
$$

8. Find the area of the parallelogram in \mathbb{R}^2 whose vertices are (3, 1), (7, 4), (4, 10), and (8, 13). *(Hint. We don’t have any vectors in this problem yet. You have to express the sides of the parallelogram as vectors before you can use any formula.)*

Solution. As the hint says, we don’t have vectors yet, but we can get them. The bottom of the parallelogram is the side that goes from (3, 1) to (7, 4). That’s a displacement of 4 in the x direction and 3 in the y direction, hence is represented with the vector $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$. Similarly the left edge of the parallelogram is the side that goes from (3, 1) to (4, 10). Here we change x up by one and y up by nine, so the vector expressing that side is $\begin{bmatrix} 1 \\ 9 \end{bmatrix}$. Now we can answer this question just like the previous one:

$$
\text{area} = \left| \begin{vmatrix} 1 & 4 \\ 9 & 3 \end{vmatrix} \right| = |3 - 36| = 33.
$$
9. Each part of this problem is a question whose answer is “yes, always”, “sometimes yes but also sometimes no”, and “no, never”. Circle the correct choice of the three.

(a) Let \(A \) and \(B \) both be \(n \times n \) invertible matrices. Does \((AB)^T = (A^T)(B^T) \)?

Yes, always

Sometimes yes

but sometimes no

No, never

Explanation. Both operations that we’re doing here—transpose and inverse—will reverse the order of multiplication, so we switch them twice and \(A \) winds up on the left.

(b) Suppose \(A \) is a square matrix, \(\det A = 0 \), and that the equation \(A\vec{x} = \vec{b} \) has a solution. Is that solution unique?

Yes, always

Sometimes yes

but sometimes no

No, never

Explanation. If \(\det A = 0 \), then \(A \) is not injective, so the equation \(A\vec{x} = \vec{0} \) has infinitely many solutions. If \(\vec{u} \) is one solution to \(A\vec{x} = \vec{b} \), then adding to \(\vec{u} \) any of the infinitely many solutions to \(A\vec{x} = \vec{0} \) will produce a new solution.

(c) Suppose \(A \) is an \(m \times n \) matrix with a zero row, and \(B \) is an \(n \times p \) matrix. Does the product \(AB \) have a zero column?

Yes, always

Sometimes yes

but sometimes no

No, never

Explanation. I mean, sure, maybe \(B \) is the zero matrix and then \(AB \) has only zero columns. But in general for this to happen a miracle has to occur. Observe an example where both \(A \) and \(B \) are 2 \(\times \) 2:

\[
\begin{bmatrix}
0 & 0 \\
1 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
7 & 10
\end{bmatrix}.
\]

What is true is that \(AB \) will have a zero row. (If you think about \(A \) as some sort of projection, then you can make sense of this fact geometrically.)

(d) If \(A \) and \(B \) are row equivalent, does \(\det A = \pm \det B \)?

Yes, always

Sometimes yes

but sometimes no

No, never

Explanation. Again, maybe \(A = B \) and then sure, \(\det A = + \det B \). But this is typically false. All invertible matrices are row-equivalent to each other, so if this were true then the determinant of everything would be the same.

10. Suppose that \(A \) and \(P \) are \(n \times n \) invertible matrices. Explain why \(PAP^{-1} \) is invertible.

Solution. There are a couple of ways to answer this one. One option is to note that we observed in class that if you multiply together invertible matrices, the resulting
product is invertible. Since P, A, and P^{-1} are all invertible (P^{-1} is invertible because its inverse is $P!$), then the expression PAP^{-1} is invertible.

A second way is to say that since A is invertible, $\det A \neq 0$, and since P is invertible, $\det P \neq 0$. Then

$$\det(PAP^{-1}) = (\det P)(\det A)(\det P^{-1}) = \frac{(\det P)(\det A)}{(\det P)} = \det A \neq 0,$$

and when a matrix’s determinant is nonzero, it is invertible.

11. Suppose that A is an $n \times n$ matrix and that for some $b \in \mathbb{R}^n$, the equation $A\vec{x} = \vec{b}$ has a unique solution. Is A invertible?

Solution. Yes it is. Since the equation has a unique solution, there can’t be any free variables in the system. That means that there’s a pivot in every column. Since A is square, there’s also a pivot in every row. But then $\text{rref}(A) = I_n$, i.e., A is invertible.

12. Let

$$J = \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

(So J is 4×4.) Let A, B, C, and D be 2×2 matrices. Lastly, let M be the 4×4 block matrix

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

(a) What is M^T? Express it as a block matrix where the blocks are in terms of A, B, C, and D.

(b) Calculate M^TJM.

(c) Write down a set of equations that A, B, C and D have to satisfy in order for it to satisfy $M^TJM = J$. (Such a matrix that satisfies this identity is called **symplectic**. They show up in later courses in linear algebra.)

Solutions. (a) To transpose the matrix, make the rows the columns and vice versa. Doing that switches B and C and also transposes all four of the blocks. (This might take writing down a 4×4 matrix to see.) You get

$$M^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}.$$

(b) Multiplying three things together involves multiplying together the first two, then
multiplying that product times the third one. You get

$$M^T J M = \begin{bmatrix}
A^T & C^T \\
B^T & D^T
\end{bmatrix}
\begin{bmatrix}
0 & I_2 \\
-I_2 & 0
\end{bmatrix}
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}$$

$$= \begin{bmatrix}
-C^T & A^T \\
-D^T & B^T
\end{bmatrix}
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}$$

$$= \begin{bmatrix}
-C^T A + A^T C & -C^T B + A^T D \\
-D^T A + B^T C & -D^T B + B^T D
\end{bmatrix}.$$

(c) The equations we get are: $A^T C = C^T A$, $A^T D = I_2 + C^T B$, $B^T C + I_2 = D^T A$, and $B^T D = D^T B$. (Often we assume that A, B, C, and D have some relationships with their transposes so that we can make further simplifications, but this is far enough for now.)