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Curve counting theories

§ Let X be a nonsingular projective variety over C, and β P H2pX ,Zq.
Counting algebraic curves of X in class β is an old problem in enumerative geometry.
More recently, some of these counts are motivated and inspired by string theory.

§ Examples: A general cubic surface in P3 contains 27 lines (Cayley 1849); there are 80,160 twisted cubics meeting 12
general lines, and 5,819,539,783,680 twisted cubics tangent to 12 general quadric surfaces in P3 (Schubert 1879); a
general quintic threefold in P4 contains 2875 lines and 609,250 conics (Katz 1986) etc.

§ In order to get deformation invariant answers for such enumerative geometry problems
we need a compactification of the moduli space of curves of X in class β, and also the transversality of the solutions.

§ For compactification, we need to allow for singular curves in the moduli space. Instead of “perturbing”, in algebraic
geometry the transversality is achieved by means of the virtual fundamental class of the moduli space. It can be
thought as the fundamental class of the “perturbed moduli space” of expected dimension inside the actual moduli
space.

§ In Donaldson-Thomas theory (for X a 3-fold) the compactification is achieved by considering the Hilbert scheme of
1-dimensional subschemes of X in class β. So the curves are free to get any types of singularities, to become
reducible and non-reduced, and even to have 0-dimensional components (roaming points).

§ In Gromov-Witten theory the compactification is achieved by considering stable maps from nodal curves to X . These
maps need not be embedding: they can be multiple covers of their images in X , or they can even have contracted
components.

§ I will talk about another curve counting theory in the next Section. Because of such complications in the boundaries,
these deformations invariants numbers (DT invariants, GW invariants,...) may differ from the actual counts of the
curves (they are called the virtual counts of curves in class β).
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Examples of degenerations
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Pandharipande-Thomas stable pairs

§ X nonsingular projective 3-fold over C.

§ A PT pair pF , sq on X consists of
$

’

&

’

%

F pure 1-dimensional sheaf on X ,

s P ΓpX ,F q is a global section of F ,

CokerpOX
s
ÝÑ F q is 0-dimensional.

§ By the Cokernel condition, F is the push-forward of a line bundle outside of a 0-dimensional subset of its support.

§ Example: If ι : C Ă X nonsingular curve, L a line bundle on C , s P ΓpC , Lq nonzero section then
pι˚L, ι˚sq is a PT pair on X .

§ All stable pairs with nonsingular supports are of the form of Example above.

§ In general, C :“ SupppF q is a Cohen-Macaulay curve (ñ DepthOC,c “ 1 for any closed point c P C ),
i.e. it satisfies Serre’s S1 condition (and hence Sk for all k ě 1).
C can be non-reduced or reducible but is not allowed to have embedded points.

§ Example: Explain the limit of stable pairs in the figure above.
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Le Potier’s stability condition

§ Let ω be a fixed very ample line bundle on X (i.e. a choice of embedding X Ă PN), and qpkq P Qrks be a
polynomial with positive leading coefficient.
Suppose pF , sq is a pair of a 1-dimensional sheaf F on X and s P ΓpX ,F q.

§ The Hilbert polynomial of F with respect to ω is given by
χpF pkqq “ pch2pF q ¨ ωqk ` χpF q.
If F is pure ch2pF q “ rSupppF qs. Denote rpF q :“ ch2pF q ¨ ω, i.e. the leading coefficient of the Hilbert polynomial.

§ The pair pF , sq is said to be pω, qq-semistable if F is pure and for any nonzero proper subsheaf G Ă F
χpG pkqq

rpG q
ď
χpF pkqq ` qpkq

rpF q
k " 0, and in case s factors through G

χpG pkqq ` qpkq

rpG q
ď
χpF pkqq ` qpkq

rpF q
k " 0.

If in addition, “ “ ” never occurs we say pF , sq is pω, qq-stable.

§ Pandharipande-Thomas: if qpkq " 0 then
pω, qq-semistability ô pω, qq-stability ô PT-stability.
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Moduli space

§ Fix n P Z, β P H2pX ,Zq. Le Potier constructed the moduli space P
pω,qq
n pX , βq of semistable pairs pF , sq, such that

the Hilbert polynomial of F is pβ ¨ ωqk ` n.

§ P
pω,qq
n pX , βq is a projective scheme over C (fine moduli space).

§ By Pandharipande-Thomas’ result from the previous page for qpkq " 0 the moduli space above doesn’t depend on q
and ω and is in fact the moduli space of PT pairs, denoted by PnpX , βq.

§ To define PT invariants one need to be able to “integrate” over this moduli space.
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PT pairs as 2-term complex

§ Think of a PT pair pF , sq as a 2-term complex I :“ rOX
s
ÝÑ F s in which

OX is in degree ´1 and F is in degree 0.

§ Obstruction theory of such a pair is governed by the Ext groups Exti pI r´1s,F q for i ě 0:
There is an obstruction class in Ext1pI r´1s,F q whose vanishing is equivalent to the existence of an infinitesimal
extension of pF , sq, and if the obstruction class is 0 then the infinitesimal deformations form a torsor (principal
homogeneous space) for Ext0pI r´1s,F q.

§ Problem: The “higher obstruction space” Ext2pI r´1s,F q may not be zero, and so this obstruction theory may not be
perfect.

§ Pandharipande-Thomas idea: Deformations of pF , sq match with the “fixed determinant deformations” of I as an

object of derived category DbpX q.
As a result, the moduli space of PT pairs PnpX , βq is a component of the moduli space of complexes in DbpX q.

§ The obstruction theory of I P DbpX q (with fixed determinant) is governed by Exti pI , I q0 for i ě 0. They are nonzero
only for i “ 1, 2.

§ The latter obstruction theory is perfect.
Behrend-Fantechi: There is a virtual fundamental class rPnpX , βqs

vir P AvdpPnpX , βqq,
where vd :“ ext1pI , I q0 ´ ext2pI , I q0 “ ´KX ¨ β is called the virtual dimension of PnpX , βq.
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Relation to other theories

§ PT invariants are defined by integrating against rPnpX , βqs
vir.

If X is Calabi-Yau then KX – OX and so the virtual dimension is 0, and
Pn,β “ degrPnpX , βqs

vir P Z.

§ There are highly nontrivial relations among GW, DT and PT invariants.
GW Ø PT Ø DT.

§ For a fixed β ‰ 0 define the generating series of PT invariants (X Calabi-Yau)

ZPT
β pX , qq “

ÿ

n

Pn,βq
n P Zppqqq.

Similarly, define ZDT
β pX , qq “

ÿ

n

In,βq
n P Zppqqq, ZGW

β pX , uq “
ÿ

g

N‚g ,βu
2g´2 P Qppuqq.

§ Conjecture: ZPT pqq and ZDT pqq{Mp´qqχpX q are the Laurent expansion of a rational function in q invariant under
q Ø q´1, where Mpqq “

ś

ně1p1´ qnq´n is the MacMahon function.

§ Conjecture: After the variable change ´q “ e iu

ZDT pqq{Mp´qqχpX q “ ZPT pqq “ ZGW puq.

§ These conjectures have been proven in many important special cases.
Formulated by Maulik-Nekrasov-Okounkov-Pandharipande and Pandharipande-Thomas.
Maulik-Oblomkov-Okounkov-Pandharipande proved DT/GW correspondence in Toric case.
Bridgeland gave a proof of DT/PT correspondence in Calabi-Yau case using the language of motivic Hall algebras.
Pandharipande-Pixton gave a proof of GW/PT correspondence for Calabi-Yau complete intersections.
Toda formulated and proved higher rank version of DT/PT correspondence.
Many other people have made significant contributions.
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Le Potier’s stability condition

§ X nonsingular projective 4-fold over C with a choice of a very ample line bundle ω.

§ Fix a Chern character vector ch :“ p0, 0, γ, β, ξq P H2˚pX ,Qq, with γ effective.

§ A 2-dimensional stable pair pF , sq on X in class ch consists of
$

’

&

’

%

F pure 2-dimensional sheaf and chpF q “ ch,

s P ΓpX ,F q is a global section of F ,

CokerpOX
s
ÝÑ F q is at most 1-dimensional.

§ By the Cokernel condition, F is the push-forward of a line bundle outside of an at most 1-dimensional subset of its
support.

§ Example 1: If ι : S Ă X is a nonsingular surface and D Ă S is an effective divisor then
the pair of the line bundle OSpDq and its canonical section s determines a 2d stable pair pι˚OSpDq, ι˚sq on X .

§ Example 2: If in Example 1 Z Ă D is a 0-dimensional subscheme with the ideal IZ ă OS

then s factors through the subsheaf IZ pDq Ă OSpDq then get a 2d stable pair pι˚IZ pDq, ι˚sq on X .

§ All 2d stable pairs of X with nonsingular supports are of the form of Example 2.
In general, S :“ SupppF q need not be a Cohen-Macaulay surface (i.e. it satisfies Serre’s condition S1 but not
necessarily S2).
If S is Cohen-Macaulay CokerpOX

s
ÝÑ F q is pure 1-dimensional.

§ As in the case of PT pairs the stability of 2d stable pairs may be realized as a limit of Le Potier’s stability (i.e when
qpkq " 0).
As a result, there is a fine moduli space PpX , chq (independent of ω, q) for the 2d stable pairs in class ch, which is a
projective scheme over C.
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Polynomial stability conditions

§ Goal: Identify PpX , chq with a moduli space of objects in DbpX q.
Think of a 2d stable pair pF , sq as a 2-term complex J :“ rOX

s
ÝÑ F s with OX is in degree -1 and F is in degree 0.

In terms of cohomologies, h´1pJq is rank 1 torsion free, h0pJq is at most 1-dimensional and hi pJq “ 0 for i ‰ ´1, 0.

§ We show that there is a heart of a t-structure A Ă Dr´1,0spX q containing all J as above.
(It is given by A “

@

Cohě2pX qr1s,Cohď1pX q
D

.)

§ Define a polynomial stability function ZP : K pAq Ñ Crxs (analog of Gieseker stability function for sheaves) with

E ÞÑ
r

ÿ

i“0

ρiω
i ¨ ch4´i pE qx

i , where ρi ’s are some fixed vectors in the plane arranged as in the left hand picture.

L f' 

l -t'. . 4 

f'o 

t'1 

It has this property that ZPpE q for x " 0 belongs to semi-open upper half plane for any 0 ‰ E P A, and also satisfies
HN-property. Then such E is called ZP -semistable if ArgpZPpE

1qq ď ArgpZPpE qq for x " 0 and for any 0 ‰ E 1 Ĺ E .

§ Theorem: The ZP -stable objects of A having trivial determinant and Chern character ch1 :“ p´1, 0, γ, β, ξq are
exactly 2d stable pairs in class ch.
There exits a finite type algebraic space MOX

pX , ch1q, which is a fine moduli space of these ZP -stable objects, and
we have PpX , chq –MOX

pX , ch1q.

§ Let ZI : K pAq Ñ Crxs be the polynomial stability function corresponding to some fixed vector arrangements as in the
right hand picture.

§ Theorem: The ZI -stable objects of A having trivial determinant and Chern character ch1 :“ p´1, 0, γ, β, ξq are
exactly of the form I r1s, where I ă OX is the ideal of a 2-dimensional subscheme of X .
The moduli space of these ZI -stable objects is identified with the Hilbert scheme of 2-dimensional subschemes of X
in class ch.

§ ZI | Zp-wall-crossing: Is interpreted as ´ρ4 rotating clockwise from its location in the right hand picture arrangement
past ρ0 and then past ρ1.

§ We have also proven higher rank versions of these results.
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Categorical relations

§ For full subcategories C1, C2 Ă DbpX q let rC1, C2s Ă DbpX q (resp.
0

C1, C2
8

Ă DbpX q) be the full subcategory
consisting of E P DbpX q fitting in an exact triangle E1

// E

��

E2

r1s

``

where E1 P C1 and E2 P C2 (resp. and HompC1, C2q “ 0).

§ For any µ P R and a torsion pair pT ,Fq in Cohď1pX q (e.g. pCoh“0pX q,Coh“1pX qq) let
CohT

µ pX q :“ tE P Dr´1,0spX q | h´1pE q µω-ss t.f. of slope µ, h0pE q P T , HompT ,E q “ 0u.

§ Theorem: Suppose pT1,F1q and pT2,F2q are two torsion pairs in Cohď1pX q such that T1 Ă T2 then
0

T2 X F1,CohT2
µ pX q

8

“
0

CohT1
µ pX q, T2 X F1

8

.

§ Corollary 1:
0

T ,CohT
µ pX q

8

“
0

CohµpX qr1s, T
8

.

(Take T1 “ 0,F1 “ Cohď1pX q, T2 “ T .)

§ Corollary 2: For any b P R
0

Cp´8,bqpX q,Coh
Cohď1pX q
µ pX q

8

“
0

Coh
Crb,8spX q
µ pX q, Cp´8,bqpX q

8

,

where for any interval I CI pX q :“
@

G P Cohď1pX q | G is µω-ss, µωpG q P I
D

,

and µωp´q :“
ch4p´q

ω ¨ ch3p´q
.

(Take T1 “ Crb,8spX q,F1 “ Cp´8,bqpX q, T2 “ Cohď1pX q,F2 “ 0.)

§ We show that for any fixed and effective class γ P H4pX ,Zq
Coh

Cohď1pX q
0 pX ;´1,OX , γq consists precisely of 2d stable pairs on X .

Also, Coh0pX ; 1,OX ,´γq consists precisely of the ideal sheaves of 2d subschemes of X .

§ In Corollary 1, take T “ Cohr0,8spX q, µ “ 0, and in Corollary 2 set b “ 0 “ µ, and then restrict:
0

Cr0,8spX q,Coh
Cr0,8spX q
0 pX ;´1,OX , γq

8

“
0

Coh0pX ; 1,OX ,´γqr1s, Cr0,8spX q
8

.
0

Cp´8,0qpX q,Coh
Cohď1pX q
0 pX ;´1,OX , γq

8

“
0

Coh
Cr0,8spX q
0 pX ;´1,OX , γq, Cp´8,0qpX q

8

.

Amin Gholampour 2-dimensional stable pairs on 4-folds



Categorical relations

§ For full subcategories C1, C2 Ă DbpX q let rC1, C2s Ă DbpX q (resp.
0

C1, C2
8

Ă DbpX q) be the full subcategory
consisting of E P DbpX q fitting in an exact triangle E1

// E

��

E2

r1s

``

where E1 P C1 and E2 P C2 (resp. and HompC1, C2q “ 0).

§ For any µ P R and a torsion pair pT ,Fq in Cohď1pX q (e.g. pCoh“0pX q,Coh“1pX qq) let
CohT

µ pX q :“ tE P Dr´1,0spX q | h´1pE q µω-ss t.f. of slope µ, h0pE q P T , HompT ,E q “ 0u.

§ Theorem: Suppose pT1,F1q and pT2,F2q are two torsion pairs in Cohď1pX q such that T1 Ă T2 then
0

T2 X F1,CohT2
µ pX q

8

“
0

CohT1
µ pX q, T2 X F1

8

.

§ Corollary 1:
0

T ,CohT
µ pX q

8

“
0

CohµpX qr1s, T
8

.

(Take T1 “ 0,F1 “ Cohď1pX q, T2 “ T .)

§ Corollary 2: For any b P R
0

Cp´8,bqpX q,Coh
Cohď1pX q
µ pX q

8

“
0

Coh
Crb,8spX q
µ pX q, Cp´8,bqpX q

8

,

where for any interval I CI pX q :“
@

G P Cohď1pX q | G is µω-ss, µωpG q P I
D

,

and µωp´q :“
ch4p´q

ω ¨ ch3p´q
.

(Take T1 “ Crb,8spX q,F1 “ Cp´8,bqpX q, T2 “ Cohď1pX q,F2 “ 0.)

§ We show that for any fixed and effective class γ P H4pX ,Zq
Coh

Cohď1pX q
0 pX ;´1,OX , γq consists precisely of 2d stable pairs on X .

Also, Coh0pX ; 1,OX ,´γq consists precisely of the ideal sheaves of 2d subschemes of X .

§ In Corollary 1, take T “ Cohr0,8spX q, µ “ 0, and in Corollary 2 set b “ 0 “ µ, and then restrict:
0

Cr0,8spX q,Coh
Cr0,8spX q
0 pX ;´1,OX , γq

8

“
0

Coh0pX ; 1,OX ,´γqr1s, Cr0,8spX q
8

.
0

Cp´8,0qpX q,Coh
Cohď1pX q
0 pX ;´1,OX , γq

8

“
0

Coh
Cr0,8spX q
0 pX ;´1,OX , γq, Cp´8,0qpX q

8

.

Amin Gholampour 2-dimensional stable pairs on 4-folds



Categorical relations

§ For full subcategories C1, C2 Ă DbpX q let rC1, C2s Ă DbpX q (resp.
0

C1, C2
8

Ă DbpX q) be the full subcategory
consisting of E P DbpX q fitting in an exact triangle E1

// E

��

E2

r1s

``

where E1 P C1 and E2 P C2 (resp. and HompC1, C2q “ 0).

§ For any µ P R and a torsion pair pT ,Fq in Cohď1pX q (e.g. pCoh“0pX q,Coh“1pX qq) let
CohT

µ pX q :“ tE P Dr´1,0spX q | h´1pE q µω-ss t.f. of slope µ, h0pE q P T , HompT ,E q “ 0u.

§ Theorem: Suppose pT1,F1q and pT2,F2q are two torsion pairs in Cohď1pX q such that T1 Ă T2 then
0

T2 X F1,CohT2
µ pX q

8

“
0

CohT1
µ pX q, T2 X F1

8

.

§ Corollary 1:
0

T ,CohT
µ pX q

8

“
0

CohµpX qr1s, T
8

.

(Take T1 “ 0,F1 “ Cohď1pX q, T2 “ T .)

§ Corollary 2: For any b P R
0

Cp´8,bqpX q,Coh
Cohď1pX q
µ pX q

8

“
0

Coh
Crb,8spX q
µ pX q, Cp´8,bqpX q

8

,

where for any interval I CI pX q :“
@

G P Cohď1pX q | G is µω-ss, µωpG q P I
D

,

and µωp´q :“
ch4p´q

ω ¨ ch3p´q
.

(Take T1 “ Crb,8spX q,F1 “ Cp´8,bqpX q, T2 “ Cohď1pX q,F2 “ 0.)

§ We show that for any fixed and effective class γ P H4pX ,Zq
Coh

Cohď1pX q
0 pX ;´1,OX , γq consists precisely of 2d stable pairs on X .

Also, Coh0pX ; 1,OX ,´γq consists precisely of the ideal sheaves of 2d subschemes of X .

§ In Corollary 1, take T “ Cohr0,8spX q, µ “ 0, and in Corollary 2 set b “ 0 “ µ, and then restrict:
0

Cr0,8spX q,Coh
Cr0,8spX q
0 pX ;´1,OX , γq

8

“
0

Coh0pX ; 1,OX ,´γqr1s, Cr0,8spX q
8

.
0

Cp´8,0qpX q,Coh
Cohď1pX q
0 pX ;´1,OX , γq

8

“
0

Coh
Cr0,8spX q
0 pX ;´1,OX , γq, Cp´8,0qpX q

8

.

Amin Gholampour 2-dimensional stable pairs on 4-folds



Categorical relations

§ For full subcategories C1, C2 Ă DbpX q let rC1, C2s Ă DbpX q (resp.
0

C1, C2
8

Ă DbpX q) be the full subcategory
consisting of E P DbpX q fitting in an exact triangle E1

// E

��

E2

r1s

``

where E1 P C1 and E2 P C2 (resp. and HompC1, C2q “ 0).

§ For any µ P R and a torsion pair pT ,Fq in Cohď1pX q (e.g. pCoh“0pX q,Coh“1pX qq) let
CohT

µ pX q :“ tE P Dr´1,0spX q | h´1pE q µω-ss t.f. of slope µ, h0pE q P T , HompT ,E q “ 0u.

§ Theorem: Suppose pT1,F1q and pT2,F2q are two torsion pairs in Cohď1pX q such that T1 Ă T2 then
0

T2 X F1,CohT2
µ pX q

8

“
0

CohT1
µ pX q, T2 X F1

8

.

§ Corollary 1:
0

T ,CohT
µ pX q

8

“
0

CohµpX qr1s, T
8

.

(Take T1 “ 0,F1 “ Cohď1pX q, T2 “ T .)

§ Corollary 2: For any b P R
0

Cp´8,bqpX q,Coh
Cohď1pX q
µ pX q

8

“
0

Coh
Crb,8spX q
µ pX q, Cp´8,bqpX q

8

,

where for any interval I CI pX q :“
@

G P Cohď1pX q | G is µω-ss, µωpG q P I
D

,

and µωp´q :“
ch4p´q

ω ¨ ch3p´q
.

(Take T1 “ Crb,8spX q,F1 “ Cp´8,bqpX q, T2 “ Cohď1pX q,F2 “ 0.)

§ We show that for any fixed and effective class γ P H4pX ,Zq
Coh

Cohď1pX q
0 pX ;´1,OX , γq consists precisely of 2d stable pairs on X .

Also, Coh0pX ; 1,OX ,´γq consists precisely of the ideal sheaves of 2d subschemes of X .

§ In Corollary 1, take T “ Cohr0,8spX q, µ “ 0, and in Corollary 2 set b “ 0 “ µ, and then restrict:
0

Cr0,8spX q,Coh
Cr0,8spX q
0 pX ;´1,OX , γq

8

“
0

Coh0pX ; 1,OX ,´γqr1s, Cr0,8spX q
8

.
0

Cp´8,0qpX q,Coh
Cohď1pX q
0 pX ;´1,OX , γq

8

“
0

Coh
Cr0,8spX q
0 pX ;´1,OX , γq, Cp´8,0qpX q

8

.

Amin Gholampour 2-dimensional stable pairs on 4-folds



Categorical relations

§ For full subcategories C1, C2 Ă DbpX q let rC1, C2s Ă DbpX q (resp.
0

C1, C2
8

Ă DbpX q) be the full subcategory
consisting of E P DbpX q fitting in an exact triangle E1

// E

��

E2

r1s

``

where E1 P C1 and E2 P C2 (resp. and HompC1, C2q “ 0).

§ For any µ P R and a torsion pair pT ,Fq in Cohď1pX q (e.g. pCoh“0pX q,Coh“1pX qq) let
CohT

µ pX q :“ tE P Dr´1,0spX q | h´1pE q µω-ss t.f. of slope µ, h0pE q P T , HompT ,E q “ 0u.

§ Theorem: Suppose pT1,F1q and pT2,F2q are two torsion pairs in Cohď1pX q such that T1 Ă T2 then
0

T2 X F1,CohT2
µ pX q

8

“
0

CohT1
µ pX q, T2 X F1

8

.

§ Corollary 1:
0

T ,CohT
µ pX q

8

“
0

CohµpX qr1s, T
8

.

(Take T1 “ 0,F1 “ Cohď1pX q, T2 “ T .)

§ Corollary 2: For any b P R
0

Cp´8,bqpX q,Coh
Cohď1pX q
µ pX q

8

“
0

Coh
Crb,8spX q
µ pX q, Cp´8,bqpX q

8

,

where for any interval I CI pX q :“
@

G P Cohď1pX q | G is µω-ss, µωpG q P I
D

,

and µωp´q :“
ch4p´q

ω ¨ ch3p´q
.

(Take T1 “ Crb,8spX q,F1 “ Cp´8,bqpX q, T2 “ Cohď1pX q,F2 “ 0.)

§ We show that for any fixed and effective class γ P H4pX ,Zq
Coh

Cohď1pX q
0 pX ;´1,OX , γq consists precisely of 2d stable pairs on X .

Also, Coh0pX ; 1,OX ,´γq consists precisely of the ideal sheaves of 2d subschemes of X .

§ In Corollary 1, take T “ Cohr0,8spX q, µ “ 0, and in Corollary 2 set b “ 0 “ µ, and then restrict:
0

Cr0,8spX q,Coh
Cr0,8spX q
0 pX ;´1,OX , γq

8

“
0

Coh0pX ; 1,OX ,´γqr1s, Cr0,8spX q
8

.
0

Cp´8,0qpX q,Coh
Cohď1pX q
0 pX ;´1,OX , γq

8

“
0

Coh
Cr0,8spX q
0 pX ;´1,OX , γq, Cp´8,0qpX q

8

.

Amin Gholampour 2-dimensional stable pairs on 4-folds



Categorical relations

§ For full subcategories C1, C2 Ă DbpX q let rC1, C2s Ă DbpX q (resp.
0

C1, C2
8

Ă DbpX q) be the full subcategory
consisting of E P DbpX q fitting in an exact triangle E1

// E

��

E2

r1s

``

where E1 P C1 and E2 P C2 (resp. and HompC1, C2q “ 0).

§ For any µ P R and a torsion pair pT ,Fq in Cohď1pX q (e.g. pCoh“0pX q,Coh“1pX qq) let
CohT

µ pX q :“ tE P Dr´1,0spX q | h´1pE q µω-ss t.f. of slope µ, h0pE q P T , HompT ,E q “ 0u.

§ Theorem: Suppose pT1,F1q and pT2,F2q are two torsion pairs in Cohď1pX q such that T1 Ă T2 then
0

T2 X F1,CohT2
µ pX q

8

“
0

CohT1
µ pX q, T2 X F1

8

.

§ Corollary 1:
0

T ,CohT
µ pX q

8

“
0

CohµpX qr1s, T
8

.

(Take T1 “ 0,F1 “ Cohď1pX q, T2 “ T .)

§ Corollary 2: For any b P R
0

Cp´8,bqpX q,Coh
Cohď1pX q
µ pX q

8

“
0

Coh
Crb,8spX q
µ pX q, Cp´8,bqpX q

8

,

where for any interval I CI pX q :“
@

G P Cohď1pX q | G is µω-ss, µωpG q P I
D

,

and µωp´q :“
ch4p´q

ω ¨ ch3p´q
.

(Take T1 “ Crb,8spX q,F1 “ Cp´8,bqpX q, T2 “ Cohď1pX q,F2 “ 0.)

§ We show that for any fixed and effective class γ P H4pX ,Zq
Coh

Cohď1pX q
0 pX ;´1,OX , γq consists precisely of 2d stable pairs on X .

Also, Coh0pX ; 1,OX ,´γq consists precisely of the ideal sheaves of 2d subschemes of X .

§ In Corollary 1, take T “ Cohr0,8spX q, µ “ 0, and in Corollary 2 set b “ 0 “ µ, and then restrict:
0

Cr0,8spX q,Coh
Cr0,8spX q
0 pX ;´1,OX , γq

8

“
0

Coh0pX ; 1,OX ,´γqr1s, Cr0,8spX q
8

.
0

Cp´8,0qpX q,Coh
Cohď1pX q
0 pX ;´1,OX , γq

8

“
0

Coh
Cr0,8spX q
0 pX ;´1,OX , γq, Cp´8,0qpX q

8

.

Amin Gholampour 2-dimensional stable pairs on 4-folds



Categorical relations

§ For full subcategories C1, C2 Ă DbpX q let rC1, C2s Ă DbpX q (resp.
0

C1, C2
8

Ă DbpX q) be the full subcategory
consisting of E P DbpX q fitting in an exact triangle E1

// E

��

E2

r1s

``

where E1 P C1 and E2 P C2 (resp. and HompC1, C2q “ 0).

§ For any µ P R and a torsion pair pT ,Fq in Cohď1pX q (e.g. pCoh“0pX q,Coh“1pX qq) let
CohT

µ pX q :“ tE P Dr´1,0spX q | h´1pE q µω-ss t.f. of slope µ, h0pE q P T , HompT ,E q “ 0u.

§ Theorem: Suppose pT1,F1q and pT2,F2q are two torsion pairs in Cohď1pX q such that T1 Ă T2 then
0

T2 X F1,CohT2
µ pX q

8

“
0

CohT1
µ pX q, T2 X F1

8

.

§ Corollary 1:
0

T ,CohT
µ pX q

8

“
0

CohµpX qr1s, T
8

.

(Take T1 “ 0,F1 “ Cohď1pX q, T2 “ T .)

§ Corollary 2: For any b P R
0

Cp´8,bqpX q,Coh
Cohď1pX q
µ pX q

8

“
0

Coh
Crb,8spX q
µ pX q, Cp´8,bqpX q

8

,

where for any interval I CI pX q :“
@

G P Cohď1pX q | G is µω-ss, µωpG q P I
D

,

and µωp´q :“
ch4p´q

ω ¨ ch3p´q
.

(Take T1 “ Crb,8spX q,F1 “ Cp´8,bqpX q, T2 “ Cohď1pX q,F2 “ 0.)

§ We show that for any fixed and effective class γ P H4pX ,Zq
Coh

Cohď1pX q
0 pX ;´1,OX , γq consists precisely of 2d stable pairs on X .

Also, Coh0pX ; 1,OX ,´γq consists precisely of the ideal sheaves of 2d subschemes of X .

§ In Corollary 1, take T “ Cohr0,8spX q, µ “ 0, and in Corollary 2 set b “ 0 “ µ, and then restrict:
0

Cr0,8spX q,Coh
Cr0,8spX q
0 pX ;´1,OX , γq

8

“
0

Coh0pX ; 1,OX ,´γqr1s, Cr0,8spX q
8

.
0

Cp´8,0qpX q,Coh
Cohď1pX q
0 pX ;´1,OX , γq

8

“
0

Coh
Cr0,8spX q
0 pX ;´1,OX , γq, Cp´8,0qpX q

8

.

Amin Gholampour 2-dimensional stable pairs on 4-folds



Boundedness results

§ Suppose γ is a reduced effective class such that any pure 2-dimensional subscheme of X in class γ is
Cohen-Macaulay (i.e. satisfies S2).

§ The following subsets of Q are bounded below:

BI :“ tω ¨ ch3pE q : E P Coh0pX ; 1,OX ,´γqr1su,

BP :“ tω ¨ ch3pE q : E P Coh
Cohď1pX q
0 pX ;´1,OX , γqu.

§ For a fixed β P H6pX ,Qq, the following subsets of Q are

AI pβq :“ tch4pE q : E P Coh0pX ; 1,OX ,´γqr1s & ch3pE q “ βu bounded below,

APpβq :“ tch4pE q : E P Coh
Cohď1pX q
0 pX ;´1,OX , γq & ch3pE q “ βu bounded above,

AT pβq :“ tch4pE q : E P Coh
Cr0,8spX q
0 pX ;´1,OX , γq & ch3pE q “ βu bounded.

§ By the above results

m :“ minp0, inf BI , inf BPq P Q.
lpβq :“ minp0, inf AI pβq, inf AT pβqq P Q,
upβq :“ maxp0, supAPpβq, supAT pβqq P Q.
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Hall algebra relations

§ Let A0pX q :“ xCohď0pX qr1s,Cohą0pX qy, where
Cohď0pX q :“

@

G P CohX q | G is µω-ss, µωpG q ď 0
D

, and similarly for Cohą0pX q.

§ A0pX q is the heart of a bounded t-structure, and contains all the objects under discussion.
Let ObjpA0q be the stack of the objects in A0pX q, and ObjchpA0q Ă ObjpA0q be the substack of the objects with
Chern character ch.

§ Denote by HpA0q :“ K pSt{ObjpA0qq the motivic Hall algebra of A0.
It is the Q-vector space span of the isomorphism classes rMÑ ObjpA0qs, where M is a finite type stack with affine
geometric stabilizers, modulo certain relations such as:
rM1

š

M2 Ñ ObjpA0qs “ rM1 Ñ ObjpA0qs ` rM2 Ñ ObjpA0qs,...(geometric bijections and Zariski fibrations).
Let HchpA0q be the span of rMÑ ObjchpA0q Ă ObjpA0qs.

§ HpA0q has K pSt{Cq-module structure. It is also equipped with an associative product ‹ defined by means of the
stack of short exact sequences in A0pX q, denoted by ExpA0q:
rM1 Ñ ObjpA0qs ‹ rM2 Ñ ObjpA0qs “ rM3 Ñ ObjpA0qs, where M3 is the fiber product as in

M3
//

��

ExpA0q
pM //

ppL,pRq
��

ObjpA0q

M1 ˆM2
// ObjpA0q ˆObjpA0q

§ For ch “ p´1, 0, γ, β, ξq or ch “ p0, 0, 0, β, ξq define the completions

pHpA0q :“
ź

ω ¨ β ě m
ξ ě lpβq

HchpA0q, rHpA0q :“
ź

ω ¨ β ě m
ξ ď upβq

HchpA0q,

where m, lpβq, upβq P Q were defined in the previous page. By the boundedness results the following memberships
hold.

§ Let

δě0C P pHpA0q, δă0C P rHpA0q, δI pγq P pHpA0q

δPpγq P rHpA0q, rHpA0q Q δT pγq P pHpA0q,

which respectively correspond to the moduli stacks of objects in the categories

Cr0,8spX q, Cp´8,0qpX q, Coh0pX ;´1,OX , γqr1s,

Coh
Cohď1pX q
0 pX ;´1,OX , γq, Coh

Cr0,8spX q
0 pX ;´1,OX , γq.

§ The categorical relations of the last page imply
Theorem:

δI pγq ‹ δ
ě0
C “ δě0C ‹ δT pγq in pHpA0q,

δă0C ‹ δPpγq “ δT pγq ‹ δ
ă0
C in rHpA0q.
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, and similarly for Cohą0pX q.

§ A0pX q is the heart of a bounded t-structure, and contains all the objects under discussion.
Let ObjpA0q be the stack of the objects in A0pX q, and ObjchpA0q Ă ObjpA0q be the substack of the objects with
Chern character ch.

§ Denote by HpA0q :“ K pSt{ObjpA0qq the motivic Hall algebra of A0.
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Symmetric obstruction theory

§ As for PT theory the natural obstruction theory of a 2d pair pF , sq that is governed by Exti pJr´1s,F q, where
J “ rOX Ñ F s, is not perfect.
By the identification PpX , chq –MOX

pX , ch1q we can instead use the fixed-determinant obstruction theory of the
object J P DbpX q that is governed by Exti pJ, Jq0.

§ Now suppose X is a Calabi-Yau 4-fold. It can be shown that Exti pJ, Jq0 ‰ 0 only for i “ 1, 2, 3. By Serre duality
Ext1pJ, Jq0 – Ext3pJ, Jq˚0 , Ext2pJ, Jq0 – Ext2pJ, Jq˚0 .

§ Let π : PpX , chq ˆ X Ñ PpX , chq be the projection and J P DbpPpX , chq ˆ X q be the universal stable pair.
There is an obstruction theory E :“ Rπ˚RHompJ, Jq0r3s Ñ LP , which is symmetric i.e. it comes with a natural

isomorphism E_ –
ÝÑ Er´2s.

§ Oh-Thomas recent theory gives a virtual fundamental class rPpX , chqsvir P AvdP {2pPpX , chq,Zr12 sq, where
vdP :“ 2 ext1pJ, Jq0 ´ ext2pJ, Jq0 “ 2pξ ` γ ¨ td2pX qq ´ γ

2.
2d stable pair invariants are define by integrating against rPpX , chqsvir.

§ Special case: If PpX , chq is smooth, and vdP is even, then ObP :“ h1pE_q is an SOp2n,Cq-bundle and in this case

rPpX , chqsvir “
?
epObPq, where

?
ep´q is Edidin-Graham square root Euler class.

§ Oh-Thomas construct a localization of
?
ep´q to the zero set of an isotropic section of an SOp2n,Cq-bundle E as

well as the square root Gysin operators
b

0!E : A˚pC ,Zr12 sq Ñ A˚´npZ ,Zr12 sq, where C Ă E is an isotropic subcone

with the zero section Z .

§ Oh-Thomas theory also gives a virtual fundamental class of the Hilbert scheme of 2-dimensional subschemes of X in
class ch with the same virtual dimension as vdP , and hence one can define the invariants by integrating against it. In
a work in progress Bae-Kool-Park have found 2d pair/ideal correspondences among these numerical invariants.
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well as the square root Gysin operators
b

0!E : A˚pC ,Zr12 sq Ñ A˚´npZ ,Zr12 sq, where C Ă E is an isotropic subcone

with the zero section Z .

§ Oh-Thomas theory also gives a virtual fundamental class of the Hilbert scheme of 2-dimensional subschemes of X in
class ch with the same virtual dimension as vdP , and hence one can define the invariants by integrating against it. In
a work in progress Bae-Kool-Park have found 2d pair/ideal correspondences among these numerical invariants.
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Symmetric obstruction theory
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J “ rOX Ñ F s, is not perfect.
By the identification PpX , chq –MOX

pX , ch1q we can instead use the fixed-determinant obstruction theory of the
object J P DbpX q that is governed by Exti pJ, Jq0.
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Local surfaces

§ Let S be a nonsingular projective surface, V be a rank 2 vector bundle on S such that ^2V – KS .
Then X :“ totpV q

p
ÝÑ S is a quasi-projective Calabi-Yau 4-fold. Let ch “ p0, 0, rSs, β, ξq be a compactly supported

class.

§ Case 1: If H0pV q “ 0 “ H ią0pOSq then PpX , chq is projective and identified with the nested Hilbert scheme S
rns
β (n

is determined by ξ, β).
Assume any L P PicβpSq is pn´ 1q-very ample (i.e. the natural map H0pLq Ñ H0pL|Z q is surjective for any Z P S rns)

then PpX , chq is smooth and ObP is a vector bundle of rank 4n ` epV q ´ 2 with fiber over pZ ,Dq P S
rns
β identified

with Ext1pIZ ,V b IZ q.

§ Case 2: If V “ L1t ‘ L2t
´1 is a split rank 2 vector bundle equipped with the C˚-action then

PpX , chqC
˚

– S
rns
β ãÑ S rns ˆ Sβ and the pushforward of rPpX , chqC

˚

svir is

cnpCO
rns
β q X rS

rnss ˆ rSβs
vir, where CO

rns
β is a rank n tautological bundle over S rns ˆ Sβ.

As a result, using Oh-Thomas virtual localization formula the 2d stable pair invariants can be expressed in terms of
known integrals over S rns and Seiberg-Witten invariants of S .
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Local Fano threefolds

§ Let Y be a nonsingular Fano projective threefold, chY p0, γ, β, ξq be a Chern character vector, PpY , chY q Le Potier’s
moduli space of 2d stable pairs on Y .

§ X :“ totpKY q
p
ÝÑ Y is a quasi-projective Calabi-Yau 4-fold. Let ch be the compactly supported class obtained by

pushing forward chY via the 0-section inclusion.
PpX , chq is proper and contains PpY , chY q as a closed subscheme.

§ If γ is a reduced class then PpX , chq – PpY , chY q so PpY , chY q inherits a symmetric obstruction theory (and hence
a virtual fundamental class) EÑ LP from PpX , chq.
If JY “ rOPˆY Ñ Gs is the universal stable pair on PpY , chY q ˆ Y then
E – Rπ˚RHompJY r´1s,Gqr2s ‘ Rπ˚RHompJY r´1s,Gq_.
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Abelian surface fibration

§ Let X be a nonsingular projective Calabi-Yau 4-fold admitting a smooth morphism p : X Ñ B, where B is a
nonsingular projective surface, and fibers of p are abelian surfaces.

§ Assume Rp˚OX – OB ‘ pOB ‘ KBqr´1s ‘ KB r´2s
e.g. X “ AbˆAb and X “ AbˆK3.

§ Let Ab be a fiber of p and ch “ chpO‘nAb q for some n. Then

B rns
–
ÝÑ PpX , chq Z ÞÑ rOX Ñ Op´1pZqs.

Moreover, vdP “ 0 and ObP – TBrns ‘ ΩBrns and the corresponding stable pair invariant is
degrPpX , chqsvir “ epB rnsq.
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