
Methodology
Given an 8-bit, grayscale image of size 512 by 512 pixels,
we subdivide it into non-overlapping sub-images  of 8 by
8 pixels. Each sub-image is converted to b = c(), an input
vector in problem (P0

ε) and, given a matrix A and tolerance
ε > 0, we obtain a reconstruction of the original image by
putting together in the right order  = c-1(A x0), where x0 is
the solution to (P0

ε) obtained by Orthogonal Matching
Pursuit (OMP), a greedy algorithm. OMP guarantees that

|| c() - c() ||2 < ε
We do this for multiple values of ε > 0 to study the

trade-off between error and compression.

Results
We obtain better compression for a given tolerance ε > 0
when we form matrix A by combining two bases (Fig. 3) as
opposed to using only one, such as in the JPEG or JPEG
2000 standards. This can be seen in Fig. 4 where the
compression vs tolerance graphs for image Barbara (Fig.
2.a), are drawn. The reconstructions for the standard OMP
implementation with ε = 32 (Fig. 2.b1) and the modified
OMP with δ = 0.94 (Fig. 2.c1) have, peak signal-to-noise
ratios (PSNR) of 36.9952 dB and 32.1482 dB, respectively.
In Figs. 2.b2 and 2.c2 the difference of the original and the
reconstruction is quantified by the structural similarity index
(SSIM).
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Introduction
Cn u rd ths?

If you answered yes to the above question, then you have
grasped what we are trying to do here, but for images. In the
example above, we have compressed the sentence “can you
read this?” to “cn u rd ths?,” which amounts to a reduction
of six characters, 33% fewer characters than in the original
sentence, but without compromising its meaning.

We can do something similar for images by way of the
following algebraic trick. Suppose that you have the system
of linear equations

A x = b,
where A is a full-rank matrix with more columns than it has
rows, and x and b are vectors that are compatible with the
matrix-vector product shown above.

This basically means that if A has m rows and n
columns, then m < n, x is a vector with n entries, and b is a
vector with m entries. Moreover, if we are given any such
vector b then we can always find a solution vector x to the
equation A x = b (this is what A being full-rank means.) In
picture form this looks like this

It is a fact that there are an infinite number of solutions
to equations of the type depicted in Fig. 1, provided A is
full-rank. This is what we can exploit to compress an image
I. Suppose that we can somehow convert I into a vector b
and that for some ad hoc matrix A we can find a vector x0
such that the number of nonzero entries of x0, from now on
written as ||x0||0, is a lot smaller than the number of nonzero
entries of vector b, ||x0||0 < ||b||0 in our new notation. Then if
we store or transmit x0 instead of b we would have
compressed image I.

Suppose now that we look at a slightly different but
related problem, we look for the solution of

(P0
ε): minx ||x||0  subject to  ||A x - b||2 < ε.

If we set ε = 0, we are back to the previous A x = b
problem. However, if we allow ε > 0 then we have a trade-
off between how close the solution x0 of (P0

ε) is to b via
Ax0, and how small ||x||0 is. This is what we explore here.

Figure 1. Underdetermined system of linear equations with
infinite number of solution vectors x for any given “signal
vector” b.
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Figure 2. Barbara: (a) original image, (b1)
reconstruction with ε = 32, using original OMP
implementation, (b2) difference with original
and Fig. b1, as measured by SSIM, (c1)
reconstruction with δ = 0.94, using modified
OMP, (c2) difference with original and Fig. c1
as measure by SSIM. For both Figs. 2.b2 and
2.c2, whiter means closer to the original.

Figure 3. The 2-dimensional basis elements used to build (a) basis DCT2,j
and (b) basis Haar2,j. One of the two classes of matrices A = [DCT2,j Haar2,j]
that we used in problem (P0

ε) concatenate both bases.

(a) (b)

Figure 4. Normalized bit-rate in bits
per pixel (bpp) vs tolerance ε. The
dashed line corresponds to the DCT
basis (Fig. 3.a), the dotted line shows
the Haar basis (Fig. 3.b), and the
solid line the combination of both
bases. Lower bpp values mean more
compression.

(a)

(b)

Figure 5. Histogram and
coefficient distribution for a
tolerance value of ε = 32: (a)
the histogram that shows the
number of times a given
column of A = [DCT2,3 Haar2,3]
has been chosen, (b) the
distribution of the coefficients
that multiply the chosen
columns.

Conclusions
The ever-increasing volume of images in use by many
multimedia channels, like Internet web sites or e-books, to
name a few, demands novel techniques to represent and
compress visual information in order to reduce the strains on
the limited channel capacity of mobile communication
devices, or the storage requirements for this type of
information.

We have explored the merits of utilizing approximate
sparse solutions of systems of linear equations (A x = b) for
this purpose and we have found that we can achieve better
compression of a given “signal” vector b by combining two
bases (stored in matrix A) rather than using only one to
represent b as is done in common compression standards
JPEG and JPEG 2000.

We have also modified the standard OMP procedure to
find solutions of (P0

ε) incorporating image quality indicators
that take into account the peculiarities of the human visual
system. This resulted in improved compression without
perceptible visual degradation as measured by the structural
similarity index (SSIM), and the mean structural similarity
index (MSSIM).
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