Fall 2010, STAT 430

Repeated Measures Designs

ssh UserID@umeg.umd.edu, tap sas913, sas
https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm

Subjects are measured at every level of a factor. For example, every subjects gets all possible treatments. Previously, every subjects received only one treatment. We'll make this clear in the following.

Ex1. One-Factor Repeated Experiment

Have 2 factors: SUBJECT and DRUG.

Each subjects is given all 4 treatments 1,2,3,4 for pain relief. Then the subject's pain tolerance is measured. Enough time is allowed to pass between treatments to prevent residual effects, and thus guarantee independence between measurements.

Subject	Drug1	Drug2	Drug3	Drug4			
1	5	9	6	11			
2	7	12	8	9	NOTE:	ONE	OBS/CELL
3	11	12	10	14			
4	3	8	5	8			

DATA PAIN;
INPUT SUBJECT DRUG PAIN;
1 1 5
1 2 9
1 3 6
1 4 11
2 1 7
2 2 12
2 3 8
ETC.

Better way to read the data using a do loop. OPTION PS=35 LS=70; DATA PAIN; INPUT SUBJ @; DO DRUG=1 TO 4; INPUT PAIN @; OUTPUT; END; DATALINES; 1 5 9 6 11 2 7 12 8 9 3 11 12 10 14 4 3 8 5 8;;

PROC PRINT DATA=PAIN; RUN;

Obs	SUBJ	DRUG	PAIN
			_
1	1	1	5
2	1	2	9
3	1	3	6
4	1	4	11
5	2	1	7
6	2	2	12
7	2	3	8
8	2	4	9
9	3	1	11
10	3	2	12
11	3	3	10
12	3	4	14
13	4	1	3
14	4	2	8
15	4	3	5
16	4	4	8

Now do 2-way ANOVA with 1 obs/cell (i.e. no interaction). $y_{ij} = mu + a_i + b_j + epsilon_{ij}$ PROC ANOVA DATA=PAIN; CLASS SUBJ DRUG; MODEL PAIN=SUBJ DRUG; MEANS DRUG/SNK; RUN; The ANOVA Procedure Class Level Information Class Levels Values SUBJ 1 2 3 4 4 1 2 3 4 DRUG 4 Number of Observations Read 16 Number of Observations Used 16 Dependent Variable: PAIN Sum of Source DF Squares Mean Square F Value Model 6 120.5000000 20.0833333 13.64 Error 13.2500000 1.4722222 9 Corrected Total 133.7500000 15 Source Pr > FModel 0.0005 Error Corrected Total R-Square Coeff Var Root MSE PAIN Mean 0.900935 14.06785 8.625000 1.213352

Source	DF	Anova SS	Mean Square	F Value
SUBJ DRUG	3 3	70.25000000 50.25000000	23.41666667 16.75000000	15.91 11.38
	Source	Pr >	F	
	SUBJ DRUG	0.00		

Therefore DRUG effects are not all zero: The 4 DRUGS not equally effective in treating pain.

NOTE: Denominator df=9 comes from ERROR df in the first table.

Student-Newman-Keuls Test for PAIN

NOTE: This test controls the Type I experimentwise error rate under the complete null hypothesis but not under partial null hypotheses.

Alpha		0.05	
Error	Degrees of Freedo	m 9	
Error	Mean Square	1.472222	
Number of Means	2	3	4
Critical Range	1.9407923	2.3954582	2.6784122

Means with the same letter are not significantly different.

SNK Grouping	Mean	N	DRUG
A A	10.5000	4	4
A	10.2500	4	2
В	7.2500	4	3
B B	6.5000	4	1

4

We see that DRUGS 4,2 and 3,1 are "same". Assuming a higher mean indicates greater pain, DRUGS 1,3 more effective in treating pain.

Now: Suppose the data were the results of assigning the 4 drugs at random to 16 subjects, then 1-Way ANOVA gives:

```
PROC ANOVA DATA=PAIN;
CLASS SUBJ DRUG;
MODEL PAIN=DRUG;
MEANS DRUG/SNK;
RUN;
```

The ANOVA Procedure

Class Level Information

Class	Levels	Values
SUBJ DRUG	4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Number	of	Observations	Read	16
Number	of	Observations	Used	16

Dependent Variable: PAIN

Source	DF	Sum of Squares	Mean Square	F Value
Model Error Corrected Total	3 12 15	50.2500000 83.5000000 133.7500000	16.7500000 6.9583333	2.41

Source	Pr > F
Model	0.1180
Error	
Corrected Total	

	R-Square	Coeff Var	Root MSE	PAIN Mean	
	0.375701	30.58395	2.637865	8.625000	
Source DRUG		DF 3	Anova SS 50.25000000	Mean Square 16.75000000	F Value 2.41
		Source	Pr >	F	
		DRUG	0.11	80	

Student-Newman-Keuls Test for PAIN

NOTE: This test controls the Type I experimentwise error rate under the complete null hypothesis but not under partial null hypotheses.

Alpha		0.05	
Error	Degrees of Freedom	n 12	
Error	Mean Square	6.958333	
Number of Means	2	3	4
Critical Range	4.0640501	4.9760399	5.5375686

Means with the same letter are not significantly different.

SNK Grouping	Mean	N	DRUG
A A	10.500	4	4
А	10.250	4	2
A A	7.250	4	3
A A	6.500	4	1

We see: Before with only 4 subjects, the ERROR SS was only 13.25 with df=9, and the drugs effects were significant. But now with 16 subjects, the ERROR SS absorbed the SUBJ SS 70.25 and is equal to 13.25 + 70.25 = 83.5 with df=12, and the drug effects are not significant.

We see: Controlling for between-subject variability reduces the error SS, and allows us to identify small treatment differences with relatively fewer subjects.

Now: use REPEATED option

Data must have the form: SUBJ PAIN1 PAIN2 PAIN3 PAIN4, where PAIN1-PAIN4 are the dependent obs from each drug. Notice: No DRUG factor.

```
DATA REPEAT1;
INPUT SUBJ PAIN1-PAIN4;
DATALINES;
1 5 9 6 11
2 7 12 8 9
3 11 12 10 14
4 3 8 5 8
;
```

PROC PRINT DATA=REPEAT1; ID SUBJ; RUN;

SUBJ	PAIN1	PAIN2	PAIN3	PAIN4
1	5	9	6	11
2	7	12	8	9
3	11	12	10	14
4	3	8	5	8

PROC ANOVA DATA=REPEAT1; MODEL PAIN1-PAIN4 = /NOUNI;<--No univariate analysis for each pain variable. REPEATED DRUG 4 (1 2 3 4);<--DRUG has 4 levels, labeled 1,2,3,4 RUN;

The SAS System

The ANOVA Procedure

Number	of	Observations	Read	4
Number	of	Observations	Used	4

Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable	PAIN1	PAIN2	PAIN3	PAIN4
Level of DRUG	1	2	3	4

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no DRUG Effect H = Anova SSCP Matrix for DRUG E = Error SSCP Matrix

S=1 M=0.5 N=-0.5

F
12
12
12
12
1

The ANOVA Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

Source	DF	Anova	SS Mea	n Square	F Value
DRUG Error(DRUG)	3 9	50.25000 13.25000		75000000 47222222	11.38
Source		Pr > F	Adj P G - G	r > F H - F	
DRUG Error(DRUG)		0.0020	0.0123	0.0020	

Greenhouse-Geisser Epsilon 0.5998 <--GG-epsilon Huynh-Feldt Epsilon 1.4433 <--HF-epsilon

Note: The F test for DRUG is identical to the one from 2-Way ANOVA.

The adjusted p-valued G-G (Greenhouse-Geisser correction) and H-F (Huynh-Feldt correction) take into account correlation among the repeated measures and resort to the so called "sphericity assumption" where numerator and denominator degrees of freedom are multiplied by "epsilon", and the significance of the F ratio is evaluated with the new degrees of freedoms. Greenhouse-Geisser correction is more Conservative.

```
With REPEATED statement, to get pairwise comparisons use: CONTRAST(n).
In our case
DRUG CONTRAST(1) gives comparisons of 1 vs 2,3,4
DRUG CONTRAST(2) gives comparisons of 2 vs 1,3,4
DRUG CONTRAST(3) gives comparisons of 1 vs 2,3,4
This is equivalent to multiple t-tests.
```

For example:

PROC ANOVA DATA=REPEAT1; MODEL PAIN1-PAIN4 = /NOUNI; REPEATED DRUG 4 CONTRAST(1)/NOM SUMMARY; <--No Multivariate stats. RUN; SUMMARY requests ANOVA

The ANOVA Procedure

Number	of	Observations	Read	4
Number	of	Observations	Used	4

The ANOVA Procedure Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable	PAIN1	PAIN2	PAIN3	PAIN4
Level of DRUG	1	2	3	4

The ANOVA Procedure

Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

Source		DF	Anova	SS Mean	Square	F Value
DRUG Error(DRUG)		3 9	50.250000 13.250000		5000000 7222222	11.38
S	ource		Pr > F	Adj Pr G - G	> F H - F	
	RUG rror(DRUG)		0.0020	0.0123	0.0020	

Greenhouse-Geisser Epsilon	0.5998
Huynh-Feldt Epsilon	1.4433

The ANOVA Procedure Repeated Measures Analysis of Variance Analysis of Variance of Contrast Variables

 $\ensuremath{\mathsf{DRUG}_N}$ represents the contrast between the nth level of DRUG and the 1st

Contrast Variable: DRUG_2

Source	DF	Anova SS	Mean Square	F Value
Mean Error	1 3	56.25000000 10.75000000	56.25000000 3.58333333	15.70
	Source	Pr >	F	
	Mean Error	0.02	87 < 1 and 2	not "same"

NOTE: Apparently SAS is doing matched pair comparison with df=n-1=4-1=3 which makes sense if "wash-out" period is perceived too short.

Contrast Variable: DRUG_3

Source	DF	Anova SS	Mean Square	F Value
Mean Error	1 3	2.25000000 4.75000000	2.25000000 1.58333333	1.42
	Source	Pr >	> F	
	Mean Error	0.31	189 <1 and 3	are "same"

The ANOVA Procedure Repeated Measures Analysis of Variance Analysis of Variance of Contrast Variables

 $\ensuremath{\mathsf{DRUG}_N}$ represents the contrast between the nth level of DRUG and the 1st

Contrast Variable: DRUG_4

Source	DF	Anova SS	Mean Square	F Value
Mean Error	1 3	64.00000000 10.00000000	64.00000000 3.333333333	19.20
	Source	Pr >	> F	
	Mean	0.02	220 <1 and 4	are not "same"

Error

Now PROC MIXED

The previous analysis assumes the interest focuses on the 4 subjects only. But if we think of the subjects as being a sample from a large population of subjects, then we deal with subject random effects. Many would say this is the best way to analyze our data. We can

```
DATA PAIN;
INPUT SUBJ @;
DO DRUG=1 TO 4;
INPUT PAIN @;
OUTPUT;
END;
DATALINES;
1 5 9 6 11
2 7 12 8 9
3 11 12 10 14
4 3 8 5 8
;
```

judge this by AIC, BIC!!!

PROC MIXED DATA=PAIN; CLASS SUBJ DRUG; MODEL PAIN=DRUG; RANDOM SUBJ; <---Random component. Random effects. RUN; QUIT;

The SAS System

The Mixed Procedure

Model Information

Data Set	WORK.PAIN
Dependent Variable	PAIN
Covariance Structure	Variance Components
Estimation Method	REML <@@@@@@ The default method.
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Containment

Class Level Information

Class	Levels	Values
SUBJ	4	1234
DRUG	4	1234

Dimensions

Covariance Parameters	2
Columns in X	5
Columns in Z	4
Subjects	1
Max Obs Per Subject	16

Number of Observations

Number of Observ	vations Read	16
Number of Observ	vations Used	16
Number of Observ	vations Not Used	0

The Mixed Procedure

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	62.87898203	
1	1	52.54100308	0.0000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate SUBJ 5.4861 <--Subject variance. Residual 1.4722 <--Resid variance.

Fit Statistics

-2 Res Log Likelihood	52.5
AIC (smaller is better)	56.5
AICC (smaller is better)	57.9
BIC (smaller is better)	55.3

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
DRUG	3	9	11.38	0.0020 <same as="" brfore<="" td=""></same>

If we use fixed effects as in two-way ANOVA as before we get better AIC and BIC(!!!) as we see next.

PROC MIXED DATA=PAIN; CLASS SUBJ DRUG; MODEL PAIN=SUBJ DRUG; <--No RANDOM component!!! RUN; QUIT;

The Mixed Procedure

Model Information

Data Set	WORK.PAIN
Dependent Variable	PAIN
Covariance Structure	Diagonal
Estimation Method	REML <@@@@@
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Residual

Class Level Information

Class	Levels	Values
SUBJ	4	1234
DRUG	4	1234

Dimensions

Covariance	Parameters	1
Columns in	Х	9
Columns in	Z	0
Subjects		1
Max Obs Per	Subject	16

Covariance Parameter Estimates

Cov Parm	Estimate
Residual	1.4722

Fit Statistics

-2 Res Log Likelihood	37.3
AIC (smaller is better)	39.3 <smaller< td=""></smaller<>
AICC (smaller is better)	39.9
BIC (smaller is better)	39.5 <smaller< td=""></smaller<>

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
SUBJ	3	9	15.91	0.0006
DRUG	3	9	11.38	0.0020

NOTE: This ANOVA is identical to 2-Way above.

```
Now compare with NON-RESTRICTED ML:
Recall the mixed effects model from above:
y_{ij}=mu + a_i + beta_j + epsilon_{ij}, i,j=1,2,3,4
OPTION PS=35 LS=70;
 DATA PAIN;
 INPUT SUBJ @;
 DO DRUG=1 TO 4;
 INPUT PAIN @;
 OUTPUT;
 END;
 DATALINES;
 1 5 9 6 11
 2 7 12 8 9
 3 11 12 10 14
 4 3 8 5 8
 ;
 PROC MIXED DATA=PAIN METHOD=ML; <--Default is REML.
 CLASS SUBJ DRUG;
 MODEL PAIN=DRUG;
 RANDOM SUBJ;
 RUN;
 QUIT;
```

The SAS System The Mixed Procedure

Model Information

Data Set	WORK.PAIN
Dependent Variable	PAIN
Covariance Structure	Variance Components
Estimation Method	ML (Before it was REML)
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based

Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
SUBJ	4	1234
DRUG	4	1234

Dimensions

Covariance H	Parameters	2
Columns in X	X	5
Columns in Z	Z	4
Subjects		1
Max Obs Per	Subject	16

The Mixed Procedure Number of Observations

Num	ber	of	Observations	Read	16
Num	ber	of	Observations	Used	16
Num	ber	of	Observations	Not Used	0

Iteration History

Iteration	Evaluations	-2 Log Like	Criterion
0	1	71.84215962	
1	1	58.05818768	0.0000000

Convergence criteria met.

Covariance Parameter Estimates

Cov	Parm	Estimate

SUBJ	4.1146	(With	REML	get	5.4861)
Residual	1.1042	(With	REML	get	1.4722)

Fit Statistics

-2 Log Likelihood	58.1	(With	REML	get	52.5)
AIC (smaller is better)	70.1	(With	REML	get	56.5)
AICC (smaller is better)	79.4				
BIC (smaller is better)	66.4				

Type 3 Tests of Fixed Effects

Effect	DF	Num DF	Den F Value	Pr > F
DRUG	3	9	15.17	0.0007 (With REML get 0.002)

Ex2. Two-Factor Repeated Experiment: Repeated measure on one factor.

Subjects are randomly assigned to control or treatment group. Then each subject is measured befored (PRE) and after (POST) treatment. The treatment for the conrol group is a placebo or no treatment at all.

GROUP	SUBJ	PRE	POST	
	1	80	83	
Control	2	85	86	
	3	83	88	
				NOTE: Subject nested within group!
	4	82	94	
Treatment	5	87	93	

6 84 98 _____ Method I: Two-Sample t-test applied to the difference scores of POST-PRE to compare the difference means of the two groups. NOTE: Data assumed normal with equal variance. For Control : D1=3, D2=1, D3=5 For Treatment: D1=12, D2=6, D3=14 H_0: mu_C = mu_T, H_1: mu_C not equal mu_T DATA PREPOST; INPUT SUBJ GROUP \$ PRE POST; DIFF = POST-PRE; DATALNES; 1 C 80 83 2 C 85 86 3 C 83 88 4 T 82 94 5 T 87 93 6 T 84 98 ;

PROC TTEST DATA=PREPOST; CLASS GROUP; VAR DIFF; RUN;

The SAS System

The TTEST Procedure

Statistics

			Lower CL		Upper CL	Lower CL
Variable	GROUP	Ν	Mean	Mean	Mean	Std Dev
DIFF	С	3	-1.968	3	7.9683	1.0413
DIFF	Т	3	0.3244	10.667	21.009	2.1677
DIFF	Diff (1-2)		-15.07	-7.667	-0.263	1.9568

Statistics

			Upper CL			
Variable	GROUP	Std Dev	Std Dev	Std Err	Minimum	Maximum
DIFF	С	2	12.569	1.1547	1	5
DIFF	Т	4.1633	26.165	2.4037	6	14
DIFF	Diff (1-2)	3.266	9.385	2.6667		

T-Tests

Variable	Method	Variances	DF	t Value	Pr > t
DIFF	Pooled	Equal	4	-2.88	0.0452 <
DIFF	Satterthwaite	Unequal	2.88	-2.88	0.0671

Equality of Variances

Variable	Method	Num DF	Den DF	F Value	Pr > F
DIFF	Folded F	2	2	4.33	0.3750

Check:

Bar(Diff_C) - Bar(Diff_T) = 3-10.667 = -7.667 StdError(Bar(Diff_C) - Bar(Diff_T)) = 2.6667 with 4 df

> -7.667/2.6667

[1] -2.875089 approx -2.88 OK.

> pt(-2.87508,4)*2
[1] 0.04523655 approx 0.0452 OK.

Thus, at alpha=0.05, the treatment mean difference is significantly different from the control mean difference.

Method II: Two-way ANOVA with factors GROUP and TIME, with TIME as a repeated measure.

```
DATA PREPOST;
INPUT SUBJ GROUP $ PRE POST;
DIFF = POST-PRE;
DATALNES;
1 C 80 83
2 C 85 86
3 C 83 88
4 T 82 94
5 T 87 93
6 T 84 98
;
```

PROC ANOVA DATA=PREPOST; CLASS GROUP; MODEL PRE POST = GROUP/NOUNI; REPEATD TIME 2 (0 1); MEANS GROUP; RUN;

The ANOVA Procedure

Class Level Information

Class	Levels	Values
GROUP	2	СТ

Number	of	Observations	Read	6
Number	of	Observations	Used	6

Repeated Measures Analysis of Variance								
Repeated	Repeated Measures Level Information							
Dependent	Variable	PRE	POST					
Leve	l of TIME	0	1					
MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no TIME Effect H = Anova SSCP Matrix for TIME E = Error SSCP Matrix S=1 M=-0.5 N=1								
Statistic	Value	F Value	Num DF	Den DF	Pr > F			
Hotelling-Lawley Trace	0.13216314 0.86783686 6.56640625 6.56640625	26.27 26.27	1 1	4	0.0069 0.0069 0.0069 0.0069			

The ANOVA Procedure Repeated Measures Analysis of Variance

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no TIME*GROUP Effect H = Anova SSCP Matrix for TIME*GROUP E = Error SSCP Matrix

S=1 M=-0.5 N=1

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.32611465	8.27	1	_	0.0452
Pillai's Trace	0.67388535	8.27	1		0.0452

Hotelling-Lawley Trace	2.06640625	8.27	1	4	0.0452
Roy's Greatest Root	2.06640625	8.27	1	4	0.0452

The ANOVA Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Anova SS	Mean Square	F Value
GROUP Error	1 4	90.75000000 30.66666667	90.75000000 7.66666667	11.84
	Source	Pr >	Pr > F	
	GROUP	0.02	63 <groups< td=""><td>are different.</td></groups<>	are different.

The ANOVA Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

Source	DF	Anova SS	Mean Square	F Value	
TIME	1	140.0833333	140.0833333	26.27	
TIME*GROUP	1	44.0833333	44.0833333	8.27	
Error(TIME)	4	21.3333333	5.3333333		
	Course	Dra			

Source

Error

Pr > F

TIME0.0069TIME*GROUP0.0452<--Interaction significant</td>Error(TIME)

The ANOVA Procedure

Level of		PRE		POS	Т
GROUP	Ν	Mean	Std Dev	Mean	Std Dev
С	3	82.6666667	2.51661148	85.6666667	2.51661148

T 3 84.3333333 2.51661148 95.0000000 2.64575131

Interesting to compare with simple TWO-WAY ANOVA with GROUP at 2 levels and TIME at 2 levels as factors, and 3 obs/cell.

```
DATA PREPOST;
INPUT GROUP $ TIME $ Y @@;
DATALNES;
C PRE 80 C POST 83
C PRE 85 C POST 86
C PRE 83 C POST 86
C PRE 83 C POST 88
T PRE 82 T POST 94
T PRE 87 T POST 93
T PRE 84 T POST 98
;
PROC ANOVA DATA=PREPOST;
```

```
CLASS GROUP TIME;
MODEL Y = GROUP TIME GROUP*TIME;
RUN;
```

The ANOVA Procedure

Class Level Information

Class	Levels	Values	
GROUP	2	СТ	
TIME	2	POST PRE	
Number of Obse	ervations Rea	d	12

Number	01	Ubservations	Read	12
Number	of	Observations	Used	12

Dependent Variable: Y

		Sum of		
Source	DF	Squares	Mean Square	F Value

Model Error Corrected	Total	2*2*(3-1)=8	274.9166667 52.0000000 326.9166667	91.6388889 6.5000000	14.10
		Source	Pr >	F	
		Model Error Corrected To	0.00 tal	15	
	R-Squar	e Coeff Var	Root MSE	Y Mean	
	0.84093	2.933281	2.549510	86.91667	
Source		DF	Anova SS	Mean Square	F Value
GROUP TIME		1 1	90.7500000 140.0833333		13.96 21.55
		Source	Pr >	F	
		GROUP TIME		57 <sig 17 <sig< td=""><td></td></sig<></sig 	
Dependent Variable: Y					
Source		DF	Anova SS	Mean Square	F Value
GROUP*TIM	Ξ	(2-1)(2-1)=1	44.0833333	44.0833333	6.78
		Source	Pr >	F	
		GROUP*TIME	0.03	14 <sig< td=""><td></td></sig<>	