1. Write explicitly the 4×4 matrix of the Discrete Haar transform. Apply this matrix to vector $(1, 0, 1, 0)$.

2. Let \(\{ h(k) : k = 0, \ldots, L \} \), \(\{ g(k) : k = 0, \ldots, L \} \) be a pair of Conjugate Quadrature Mirror Filters of finite length \(L + 1 < \infty \). Let \(c \in \mathbb{R}^d \) \((d > L, \text{ d even}) \). Let \(H(c)(n) = \sum_k h(k) c(k + 2n) \) and \(G(c)(n) = \sum_k g(k) c(k + 2n) \). Thus, \(H \) and \(G \) can be identified with \((d/2) \times d\) matrices. Let \(A^* \) denote the adjoint to \(A \). Show that \(HH^* = GG^* = Id \).

3. Let \(\{ h(k) : k = 0, \ldots, L \} \), \(\{ g(k) : k = 0, \ldots, L \} \) be a pair of Conjugate Quadrature Mirror Filters of finite length \(L + 1 < \infty \). Let \(c \in \mathbb{R}^d \) \((d > L, \text{ d even}) \). Let \(H(c)(n) = \sum_k h(k) c(k + 2n) \) and \(G(c)(n) = \sum_k g(k) c(k + 2n) \). Thus, \(H \) and \(G \) can be identified with \((d/2) \times d\) matrices. Let \(A^* \) denote the adjoint to \(A \). Show that \(HG^* = GH^* = 0 \).

4. Show that if \(M \) is an arbitrary integer and if \(\{ h(k) : k = 0, \ldots, L \} \) is a Quadrature Mirror Filter, then so is the sequence
\[
g(k) = (-1)^k h(2M - 1 - k).
\]

5. Prove that the \(N \times N \) matrix of the Discrete Haar Transform is unitary.

6. Find the Lagrange polynomial through the points \((1, 1), (2; 2), (3; 3)\).

7. Find the expansion in Chebyshev polynomials \(T_0(x), T_1(x), T_2(x) \) of the function \(f(x) = 1 + x^2 \) dened for \(x \in [-1, 1] \).

8. Suppose that \(f(x) = c \) is a constant function. Show that for any sampling of \(f \), the piecewise linear approximation exactly equals \(f \).