
Exam 3 Problem 1 Solution
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Grading scheme 1
Since x2−x is bounded near 0 and continuous on [0,∞)∫ ∞

0

x2−x dx = lim
c→∞

∫ c

0

x2−x dx (2 points)

Now we use integration by parts.

u = x dv = 2−xdx = e−(ln 2)x dx
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We know that
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But Ce−(ln 2)C has indeterminate form ∞ · 0. So by L’Hopital’s Rule,
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Therefore
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So the integral converges. (2 points)


