1. Consider the function
 \[f(z) = \frac{z^2 + z - 1}{z(z - 1)^2}. \]

 (a)[2pts] Find and classify all singular points of \(f(z) \).
 (b)[8pts] Compute the integral
 \[I = \int_{\Gamma} f(z) \, dz, \]
 where the closed contour \(\Gamma \) is traversed once positively, in the following cases:
 b.i) \(\Gamma \) is the circle with center at \(z = 2 \) and radius \(3/2 \);
 b.ii) \(\Gamma \) is circle with center at \(z = 2 \) and radius 100.

2. Consider the integral
 \[H(z) = \frac{1}{2\pi i} \int_{C} \frac{e^\zeta + \zeta^{-1}}{\zeta - z} \, d\zeta, \]
 where \(C \) is the circle with center at \(z = 0 \) and radius 1, traversed once counterclockwise.
 Compute the following values:
 (a)[4pts] \(H(0) \);
 (b)[6pts] \(\lim_{z \to i} H(z) \) if \(z \) lies outside \(C \).

3. Consider the function
 \[f(z) = \frac{z - 1}{3 - z}. \]

 (a)[8pts] Find the Taylor series for \(f(z) \) at \(z_0 = 0 \). What is the radius of convergence of this Taylor series? Explain carefully.
 (b)[2pts] Consider the function \(g(z) = e^{f(z)} \). What kind of isolated singularity of \(g(z) \) is the point \(z_0 = 3 \)? Explain carefully.

4. [10pts] Consider the function
 \[f(z) = \frac{1}{z(z - i)}. \]
 Find the Laurent series for \(f(z) \) at \(z_0 = 0 \) in the annulus \(1 < |z| < \infty \).