1. [5 pts] Let \mathcal{L} be the language whose non-logical symbols are a unary function symbol F and binary function symbols G and H. Let \mathcal{A} be the \mathcal{L}-structure with universe \mathbb{Z} which interprets F by $p(x)$ (where $p(k) = k - 1$), interprets G by $+$, and interprets H by $-$, and let \mathcal{B} be the \mathcal{L}-structure with universe \mathbb{Z} which interprets F by $s(x)$ (where $s(k) = k + 1$), interprets G by \cdot, and interprets H by $-$. Determine $t^{\mathcal{A}}$ and $t^{\mathcal{B}}$ where

$$t = H(G(F(x), F(y)), F(G(x, y)))$$

Simplify your answers.

2. Let φ be the formula

$$\exists y R(x, y) \land \exists z R(y, z) \rightarrow \forall x (R(x, z) \rightarrow \exists z R(z, x))$$

[2 pts] (a) List all subformulas of φ.

[2 pts] (b) Determine which occurrences of variables in φ are free and which are bound.

3. [5 pts] Let \mathcal{L} be the language whose only non-logical symbol is a binary relation symbol R. Let $\mathcal{A} = (\mathbb{N}, \leq)$. Determine the sets defined by the following formulas in \mathcal{A}. Explain and simplify your answers.

(a) $\varphi(x)$ is $\forall y (R(y, x) \rightarrow R(x, y))$

(b) $\psi(x)$ is $\forall y (R(x, y) \rightarrow R(y, x))$

4. [6 pts] Let \mathcal{L} be the language whose only non-logical symbols are unary relation symbols E and P and the binary relation symbol R. Let \mathcal{A} be the \mathcal{L}-structure with universe \mathbb{N} which interprets E by the set of even natural numbers, P by the set of prime natural numbers, and R by $<$. Give sentences of \mathcal{L} which “naturally” express the following facts about \mathcal{A}.

(a) There is a smallest prime number.

(b) There is no largest prime number.

(c) There is exactly one even prime number.

NOTE: Your solutions must include enough detail to justify your conclusions.