1. Let \leq be the usual order on \mathbb{N}.

 [10 pts] (a) Explicitly define a linear order \leq^* on \mathbb{N} which is not a well order. Justify your answer.

 [15 pts] (b) Explicitly define a well order $\leq^\#$ on \mathbb{N} such that $(\mathbb{N}, \leq) <_\omega (\mathbb{N}, \leq^\#)$. Justify your answer.

2. [20 pts] Let U be a well ordered set. Prove, by induction, that the following holds for every $x \in U$:

 there is some $z \in U$, where z is either 0_U or a limit point of U, and some $n \in \mathbb{N}$ such that $x = S^n(z)$.

 S^n is defined by recursion on \mathbb{N}: $S^0(z) = z$, $S^{n+1}(z) = S(S^n(z))$.

3. [20 pts] Assume that for every non-empty set A and for every equivalence relation E on A there is some function f whose domain is the set of equivalence classes of E and is such that for every $a \in A$, $f([a/E]) \in [a/E]$. Prove that the Axiom of Choice holds.

 Hint: It suffices to show the existence of choice sets.

4. [15 pts] Prove that $\mathbb{N} \leq_c A$ for every infinite set A using Dependent Choice, but not the full Axiom of Choice.

5. [20 pts] (AC) Assume that there is a surjection g of A onto B. Prove that $B \leq_c A$.

NOTE: Your solutions must include enough detail to justify your conclusions.