1. Introduction: What is Logic?

Logic is traditionally defined as the study of reasoning. Mathematical Logic is, in particular, the study of reasoning as used in mathematics. Mathematical reasoning is deductive — that is, it consists of drawing (correct) conclusions from given hypotheses. Thus the basic concept is that of a statement being a logical consequence of some other statements. In ordinary mathematical English the use of “therefore” customarily indicates that the following statement is a consequence of what comes before. For example:

Every integer is either odd or even. 7 is not even. Therefore 7 is odd.

We need to give a precise, mathematical, definition of logical consequence in order to study mathematical reasoning mathematically. To be a logical consequence the conclusion should not only be true (supposing the hypotheses to be true) but this should depend only on the “logical structure” of the statements — in this example, only on the meanings of “every”, “or” and “not”, but not on the meanings of “integer” “even”, “odd”, or “7”. For example, consider the following:

Some integers are odd. Some integers are prime. Therefore some integers are both odd and prime.

Although the conclusion is true this is not a valid example of a logical consequence since the conclusion fails, although the hypotheses hold, if “prime” is replaced by “even”.

To capture this essential aspect of logical consequence we will work in formal languages in which the “non-logical” symbols do not have a fixed meaning. A formal language determines a collection of sentences of the language and also a class of interpretations for the language. Each sentence of the formal language is either true or false in each interpretation. We will define a sentence to be a logical consequence of a set of sentences (hypotheses) if it is true in every interpretation which makes all of the hypotheses true.

Now, a proof (or deduction, the term we will use in dealing with formal languages) is an argument following certain specified rules. To be useful the rules of a proof system should have the following properties:

1. The rules should guarantee that the results proved are in fact logical consequences of the hypotheses assumed. In this case the system is called sound.
2. The rules used must be explicitly and completely specified, so that it is possible to mechanically check whether a sequence of steps is really a proof. In this case the system is called effective.

The goal of mathematics is to show that certain statements (sentences) are true of some particular structure, or of each structure in some collection of structures. For example \(|a + b| \leq |a| + |b|\) is true in the real numbers, but more generally true of any structure satisfying certain axioms.

The obvious question is: do proofs enable us to derive all sentences true of the structure, or collection of structures, in question? Of course this will depend on the formal language involved. Kurt Gödel gave two contrasting answers to this question, for first order languages. The first answer is the following:

Theorem 1. (The Completeness Theorem) Let \(\Sigma\) be a set of first order sentences, and let \(\theta\) be a first order sentence. Then \(\theta\) is true in every model of \(\Sigma\) iff \(\theta\) has a proof from \(\Sigma\) (in a proof system depending only on the language).

But what if you want to know whether a sentence is true in some specific mathematical structure, such as the integers? His answer was the following surprising result:

Theorem 2. (The Incompleteness Theorem) There is no effective axiomatic proof system strong enough to prove precisely the true first order sentences about arithmetic on the integers.

Our goal in this course is to explain and prove these two theorems.

2. Outline

Although our main interest is in first order languages, we first study a simpler formal language, called sentential logic. We will define sentences, interpretations, logical consequence, and a proof system for sentential logic, and prove the Completeness Theorem (for sentential logic). This is the content of Chapter 1.

In Chapter 2 we introduce first order languages, and in Chapter 3 we prove Gödel’s Completeness Theorem. In Chapter 4 we discuss computability and decidability, and in Chapter 5 we use this material to prove Gödel’s Incompleteness Theorem.

3. References

There are (too) many texts on elementary mathematical logic. One standard reference is Enderton’s *A Mathematical Introduction to Logic*, which covers all of the material in these notes from the same perspective, but more thoroughly and in greater depth.

Crossley’s little book *What is Mathematical Logic?*, now out of print, is a useful introduction and overview but lacks detail.