AMSC/CMSC 460: Final Exam

Prof. Doron Levy

December 14, 2016

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 120 minutes
- Good luck!

Problems:

1. (10 points) Consider the following 3 values of $f(x): f(x-h), f(x)$, and $f(x+2 h)$.
(a) Use the method of undetermined coefficients to find the best approximation for $f^{\prime}(x)$. What is the order of this approximation?
(b) Use the method of undetermined coefficients to find the best approximation for $f^{\prime \prime}(x)$. What is the order of this approximation?
2. (10 points) Let $w(x)=x^{2}, \forall x \in[-1,1]$.
(a) Use the Gram-Schmidt process to find the first two orthogonal polynomials with respect to the inner product

$$
\langle f(x), g(x)\rangle_{w}=\int_{-1}^{1} f(x) g(x) w(x) d x
$$

Do not normalize the polynomials.
(b) Use the least squares theory to find the polynomial of degree $0, Q_{0}(x)$, that minimizes

$$
\int_{-1}^{1} x^{2}\left(x^{2}-Q_{0}(x)\right)^{2} d x
$$

3. (10 points)

(a) Use the Lagrange interpolation polynomial to derive a formula of the form $\int_{-1}^{1} f(x) d x \approx A f(0)+B f(1)$.
(b) Find a formula of the form $\int_{0}^{1} f(x) d x \approx A f(0)+B f(1)$, that is exact for all functions of the form $f(x)=a x+b \sin (\pi x)$. (Note that this problem has different boundaries of integration than in part (a)).
4. (10 points) Consider the initial-value problem: $y^{\prime}(t)=f(t, y(t)), \quad y(0)=a$.
(a) Explain how to obtain Euler's method for approximating solutions of this initial-value problem, by using the rectangular quadrature rule on the integral form of the ODE.
(b) Perform two steps of Euler's method, assuming that $f(t, y(t))=t+y, y(0)=$ 1 , and $h=0.5$.

5. (10 points)

(a) Let $f(x)=x^{3}+x-3$. Explain why $f(x)$ has at least one positive root. Explain how to use Newton's method for approximating a root of $f(x)$. Compute two iterations of Newton's method, starting from $x_{0}=1$.
(b) Consider the same polynomial from part (a): $f(x)=x^{3}+x-3$.

Consider the values of $f(x)$ at $x_{0}=-2, x_{1}=-1, x_{2}=0$, and $x_{3}=1$. Let $Q_{3}(x)$ denote the interpolation polynomial through these four points. Find $Q_{3}(x)$.

