AMSC/CMSC 460: Final Exam

Prof. Doron Levy

May 13, 2017

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 120 minutes
- Good luck!

Problems:

1. (10 points) Consider the following 2 values of a function $f(x): f(1)$ and $f(1+h)$.
(a) Find the Lagrange form of the polynomial that interpolates the given values.
(b) Use the results of part (a) to derive a quadrature for $\int_{1-h}^{1+h} f(x) d x$.
2. (10 points) Let $w(x)=1, \forall x \in[0,1]$.
(a) Use the Gram-Schmidt process to find the first two orthonormal polynomials, $P_{0}(x)$ and $P_{1}(x)$ (of degrees 0 and 1 , respectively), with respect to the inner product

$$
\langle f(x), g(x)\rangle_{w}=\int_{0}^{1} f(x) g(x) w(x) d x
$$

(b) Use the least squares theory to find the linear polynomial $Q_{1}(x)$, that minimizes

$$
\int_{0}^{1}\left(e^{x}-Q_{1}(x)\right)^{2} d x
$$

(c) Use the results of part (a) to find the most accurate quadrature of the form

$$
\int_{0}^{1} f(x) d x \approx A_{0} f\left(x_{0}\right)
$$

3. (10 points)

(a) Consider the ODE, $y^{\prime}(t)=f(t, y(t))$ for $a \leq y \leq b$, subject to the initial value $y(a)=y_{0}$. Explain how to obtain the modified Euler method for approximating solutions of this initial-value problem, by using the midpoint quadrature rule on the integral form of the ODE.
(b) Assume an approximation

$$
f^{\prime \prime}(x)=\frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}+c_{1} h^{2}+c_{2} h^{4}+O\left(h^{6}\right) .
$$

Use Richardson's extrapolation to find an $O\left(h^{4}\right)$ approximation to $f^{\prime \prime}(x)$. Write explicitly the resulting approximation.

4. (10 points)

(a) Use divided differences with repetitions to find a polynomial of a minimal degree that interpolates $f(0)=f^{\prime}(0)=f(1)=f^{\prime}(1)=1$.
(b) Find a Cholesky decomposition for

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 6
\end{array}\right)
$$

