AMSC 466: Final Exam

Prof. Doron Levy
May 16, 2016

Read carefully the following instructions:

- Write your name \& student ID on the exam book, copy the honor pledge and sign it.
- You may not use any books, notes, or calculators.
- Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- The maximum grade is 100 .
- Exam time: 2 hours
- Good luck!
i

Problems:

1. (20 points). Find a formula of the form

$$
\int_{-1}^{1} f(x) d x \approx A_{0} f(0)+A_{1} f(1)+A_{2} f(2)
$$

that is exact for all functions of the form $f(x)=a x+b x^{3}+c \cos \frac{\pi x}{2}$.
2. (20 points). Consider the following 3 values of $f(x): f(x-h), f(x)$, and $f(x+2 h)$.
(a) Using these values, find the best approximation of $f^{\prime}(x)$.

What is the order of this approximation?
(b) Using these values, find the best approximation of $f^{\prime \prime}(x)$.

What is the order of this approximation?
(c) Using these values, find any approximation of $f^{\prime}(x)+f^{\prime \prime}(x)$.

What is the order of this approximation?
3. (20 points). Consider the following matrix:

$$
A=\left(\begin{array}{ccc}
4 & 10 & 12 \\
10 & 50 & 40 \\
12 & 40 & 100
\end{array}\right)
$$

Find a Cholesky decomposition for A.
4. (20 points) Let $T_{n}(x)$ be the Chebyshev polynomial of degree n. Let x_{0}, x_{1} be the roots of $T_{2}(x)$.
(a) Find x_{0}, x_{1}.
(b) Write the Lagrange form for interpolating a function $f(x)$ at x_{0}, x_{1}. Find a bound on the interpolation error in the interval $[-1,1]$.
(c) Find a Gaussian quadrature of the form

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \approx A f\left(x_{0}\right)+B f\left(x_{1}\right)
$$

where x_{0} and x_{1} are the roots of $T_{2}(x)$. If $f(x)$ is a polynomial, what is the degree of $f(x)$ for which this Gaussian quadrature is exact?

In solving this problem you may use the recursion relation for Chebyshev polynomials:

$$
T_{n+1}(x)-2 x T_{n}(x)+T_{n-1}(x)=0 .
$$

You may also use the following formula

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+c
$$

Note that for $n \neq m, \int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=0$.
5. (a) (10 points). Let $w(x)=e^{-x}$. Find the first two orthogonal polynomials with respect to the inner product

$$
\langle f(x), g(x)\rangle_{w}=\int_{0}^{\infty} f(x) g(x) w(x) d x
$$

(Do not normalize the polynomials).
(b) (10 points). Find the polynomial of degree $\leq 1, p_{1}(x)$, that minimizes

$$
\int_{0}^{\infty} e^{-x}\left(e^{-x}-p_{1}(x)\right)^{2} d x
$$

In solving both parts of this problem you may use the following formula:

$$
\int x^{n} e^{a x} d x=\frac{e^{a x}}{a}\left(x^{n}-\frac{n x^{n-1}}{a}+\frac{n(n-1) x^{n-2}}{a^{2}}-\cdots \frac{(-1)^{n} n!}{a^{n}}\right)+c, \quad n=\text { positive integer }
$$

