AMSC/CMSC 460: HW \#10
 Due: Thursday 4/27/17 (in class)

Please submit the solution to at least one problem in LaTeX.

1. Use the Lagrange interpolation polynomial to derive the formula of the form

$$
\int_{0}^{1} f(x) d x \approx A f(1 / 3)+B f(2 / 3)
$$

Transform the preceding formula to one for integration over $[a, b]$. Apply this result to evaluate $\int_{0}^{\pi} \sin (x)$. Compare with the exact value of the integral.
2. Find the formula

$$
\int_{0}^{1} f(x) d x \approx A_{0} f(0)+A_{1} f(1)
$$

that is exact for all functions of the form $f(x)=a e^{x}+b \cos (\pi x / 2)$.
3. Use the Lagrange interpolation polynomial to derive the formula of the form

$$
\int_{0}^{1} f(x) d x \approx A f(0)+B f(1 / 2)+C f(1)
$$

Transform the preceding formula to one for integration over $[a, b]$.
4. Derive a formula for approximating $\int_{1}^{3} f(x) d x$, in terms of $f(0), f(1), f(4)$. It should be exact for all f in Π_{2}.
5. Derive the Newton-Cotes formula for $\int_{0}^{1} f(x) d x$, based on the Lagrange interpolation polynomial at the nodes $-2,-1$ and 0 . Apply this result to evaluate the integral when $f(x)=\sin \pi x$.
6. Find a formula of the form

$$
\int_{0}^{1} x f(x) d x \approx \sum_{i=0}^{1} A_{i} f\left(x_{i}\right)
$$

that is exact for all polynomials of degree 3 .
7. Find a formula of the form

$$
\int_{0}^{1} x^{2} f(x) d x \approx \sum_{i=0}^{1} A_{i} f\left(x_{i}\right)
$$

that is exact for all polynomials of degree 3.

