AMSC/CMSC 460: HW \#2
 Due: Tuesday $2 / 9 / 17$ (in class)

Please submit the solution to at least one problem in LaTeX.

1. Use the bisection method to find solutions, accurate to within 10^{-5} for the following problems:
(a) $x-2^{-x}=0, \quad$ for $0 \leq x \leq 1$
(b) $e^{x}-x^{2}+3 x-2=0, \quad$ for $0 \leq x \leq 1$.
2. Perform four iterations of Newton's method for the polynomial $p(x)=4 x^{3}-2 x^{2}+3$ starting with $x_{0}=-1$.
3. Use both Newton's method and the Secant method to find solutions accurate to within 10^{-5} for the following problems:
(a) $e^{x}+2^{-x}+2 \cos x-6=0, \quad$ for $1 \leq x \leq 2$,
(b) $\ln (x-1)+\cos (x-1)=0, \quad$ for $1.3 \leq x \leq 2$.

Compare the number of iterations you had to use with each method to obtain a root with desired accuracy.
4. The function

$$
f(x)=\frac{x}{\sqrt{1+x^{2}}}
$$

has a unique root $x=0$.
(a) Show that Newton's method gives $x_{k+1}=-x_{k}^{3}$. Conclude that the method succeeds in approximating the root if and only if $\left|x_{0}\right|<1$.
(b) Draw graphs to illustrate the first few iterates when $x_{0}=.5$ and $x_{0}=1.5$.
5. What is the purpose of the following iterative process?

$$
x_{n+1}=2 x_{n}-x_{n}^{2} y, \quad n \geq 0
$$

Hint: Fix y and assume that the method converges, i.e., $x_{n} \rightarrow a$ as $n \rightarrow \infty$. What is a ? To check your answer, compute ten iterations of the method when $x_{0}=0.5$ and $y=0.1$. Difficult Bonus: Identify it as the Newton iteration for a certain function.
6. Read Sections 4.5, 4.6, and 4.7 from Chapter 4 (Zeros and Roots) in Cleve Moler's book.
(a) Explain in your words how the algorithm "zeroin" works
(b) Solve problem 4.15(a).

