AMSC/CMSC 460: HW \#3

Due: Thursday 2/16/17 (in class)

Please submit the solution to at least one problem in LaTeX.

1. Let $f(x)=x^{3}$. Find the second Taylor polynomial $P_{2}(x)$ about $x_{0}=0$.
2. Let $f(x)=\sqrt{x+1}$. Find the third Taylor polynomial $P_{3}(x)$ about $x_{0}=0$. Use $P_{3}(x)$ to approximate $\sqrt{0.5}, \sqrt{0.75}, \sqrt{1.25}$, and $\sqrt{1.5}$ Determine the actual error of these approximations.
3. The Maclaurin series for $(1+x)^{n}$ is also known as the binomial series. It states that

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots, \quad\left(x^{2}<1\right) .
$$

Derive this series by computing a Taylor's for $(1+x)^{n}$ around $x=0$. Note that it is not assumed that n is an integer. Give its particular form in summation notation for $n=\frac{1}{2}$. Use this expression to compute $\sqrt{1.0001}$ correct to 15 decimal places.
4. Expand the error function

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

in a series by using the exponential series and integrating.
5. Read Chapters 2 and 3 in Michael Overton's book "Numerical Computing with IEEE Floating Point Arithmetic". Solve problems 3.1, 3.2, 3.3, 3.4, 3.6, 3.8. These chapters can be downloaded from the university library's webpage.

