AMSC/CMSC 460: Midterm 2 Solutions
 Prof. Doron Levy

November 3, 2016

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems:

1. (10 points) Using Newton's form of the Hermite interpolation polynomial, find the polynomial of degree ≤ 3 that interpolates: $f(1)=0, f^{\prime}(1)=2, f(2)=1$, $f^{\prime}(2)=3$. (Compute explicitly all the divided differences).

Solution:

The polynomial we are seeking is of the form:

$$
Q_{2}(x)=f[1]+f[1,1](x-1)+f[1,1,2](x-1)^{2}+f[1,1,2,2](x-1)^{2}(x-2) .
$$

The divided differences are: $f[1]=f(1)=0 . f[1,1]=f^{\prime}(1)=2$. Also

$$
\begin{aligned}
& f[1,1,2]=\frac{f[1,2]-f[1,1]}{2-1}=\frac{\frac{f(2)-f(1)}{2-1}-f^{\prime}(1)}{1}=\frac{\frac{1-0}{1}-2}{1}=-1 . \\
& f[1,2,2]=\frac{f[2,2]-f[1,2]}{2-1}=f^{\prime}(2)-\frac{f(2)-f(1)}{2-1}=3-1=2 \\
& f[1,1,2,2]=\frac{f[1,2,2]-f[1,1,2]}{2-1}=2-(-1)=3 .
\end{aligned}
$$

Hence

$$
Q_{2}(x)=2(x-1)-(x-1)^{2}+3(x-1)^{2}(x-2) .
$$

2. Let $w(x)=1, \forall x \in[-3,2]$.
(a) (10 points) Find the first two orthogonal polynomials with respect to the inner product

$$
\langle f(x), g(x)\rangle_{w}=\int_{-3}^{2} f(x) g(x) w(x) d x
$$

Solution: Let $P_{0}(x)=1$. Set $P_{1}(x)=x-c P_{0}(x)=x-c$. Then

$$
\left\langle P_{0}, P_{1}\right\rangle=\int_{-3}^{2}(x-c) d x=\frac{x^{2}}{2}-\left.c x\right|_{-3} ^{2}=-\frac{5}{2}-5 c=0
$$

Hence $c=-\frac{1}{2}$, which means that $P_{1}(x)=x+\frac{1}{2}$.
(b) (10 points) Normalize the polynomials you found in part (a).

Solution:

$$
\left\|P_{0}(x)\right\|^{2}=\left\langle P_{0}, P_{0}\right\rangle=\int_{-3}^{2} d x=5
$$

Hence, if we set $\tilde{P}_{0}=c P_{0}$, then

$$
\left\|\tilde{P}_{0}\right\|=1=c^{2}\left\|P_{0}\right\|^{2}=5 c^{2}
$$

i.e., $c=\frac{1}{\sqrt{5}}$, which means that $\tilde{P}_{0}(x)=\frac{1}{\sqrt{5}}$.

Similarly,

$$
\begin{aligned}
\left\|P_{1}(x)\right\|^{2} & =\left\langle P_{1}, P_{1}\right\rangle=\int_{-3}^{2}\left(x+\frac{1}{2}\right)^{2} d x=\int_{-3}^{2}\left(x+x+\frac{1}{4}\right) d x= \\
& =\frac{x^{3}}{3}+\frac{x^{2}}{2}+\left.\frac{1}{4} x\right|_{-3} ^{2}=\frac{8}{3}+\frac{4}{2}+\frac{2}{4}-\left(-\frac{27}{3}+\frac{9}{2}-\frac{3}{4}\right)=\frac{125}{12}
\end{aligned}
$$

Hence, the normalized $\tilde{P}_{1}(x)$ is

$$
\tilde{P}_{1}(x)=\sqrt{\frac{12}{125}}\left(x+\frac{1}{2}\right) .
$$

(c) (10 points) Find the polynomial of degree $0, Q_{0}(x)$, that minimizes

$$
\int_{-3}^{2}\left(e^{x}-Q_{0}(x)\right)^{2} d x
$$

Solution: We let $Q_{0}(x)=c_{0} \tilde{P}_{0}(x)$, where $\tilde{P}_{0}=\frac{1}{\sqrt{5}}$ is the orthonormal polynomial of degree 0 computed in part (b). Since this is a normalized polynomial, we can write

$$
c_{0}=\left\langle f, \tilde{P}_{0}\right\rangle=\int_{-3}^{2} \frac{e^{x}}{\sqrt{5}} d x=\frac{e^{2}-e^{-3}}{\sqrt{5}} .
$$

This means that

$$
Q_{0}(x)=\frac{e^{2}-e^{-3}}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}}=\frac{e^{2}-e^{-3}}{5}
$$

3. Consider the following three data points: $(-\pi, 0),(0,0),(\pi / 2,1)$.
(a) (10 points) Write the Lagrange form of the quadratic polynomial that interpolates the given data.

Solution: The Lagrange form of the interpolation polynomial through three points $x_{i}, f\left(x_{I}\right), i=0,1,2$, is written as:

$$
Q_{2}(x)=f\left(x_{0}\right) l_{0}(x)+f\left(x_{1}\right) l_{1}(x)+f\left(x_{2}\right) l_{2}(x) .
$$

Here, the only nonzero value is $f\left(x_{2}\right)=1$. Hence,

$$
Q_{2}(x)=l_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{(x+\pi) x}{(\pi / 2+\pi)(\pi / 2)}=\frac{4 x(x+\pi)}{3 \pi^{2}} .
$$

(b) (10 points) Repeat part (a) with Newton's form. Compute all the divided differences.

Solution: Newton's form of the interpolation polynomial is:

$$
Q_{2}(x)=f(-\pi)+f[-\pi, 0](x+\pi)+f[-\pi, 0, \pi / 2](x+\pi) x .
$$

Here, $f(-\pi)=0$ and

$$
f[-\pi, 0]=\frac{f(0)-f(-\pi)}{0-(-\pi)}=0
$$

Also

$$
f[0, \pi / 2]=\frac{f(\pi / 2)-f(0)}{\pi / 2-0}=\frac{1-0}{\pi / 2}=\frac{2}{\pi} .
$$

Finally,

$$
f[-\pi, 0, \pi / 2]=\frac{f[0, \pi / 2]-f[-\pi / 0]}{\pi / 2-(-\pi)}=\frac{\frac{2}{\pi}}{3 \pi / 2}=\frac{4}{3 \pi^{2}}
$$

Hence,

$$
Q_{2}(x)=\frac{4 x(x+\pi)}{3 \pi^{2}}
$$

which is identical to the result of part (a). As should be.
(c) (5 points) Assuming that the given data points were sampled from $f(x)=$ $\sin (x)$, find an expression for the interpolation error.

Solution:

The interpolation error is given by

$$
f(x)-Q_{2}(x)=\frac{f^{3}(\xi)}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

where ξ is an intermediate point in the interval. In our case: $-\pi<\xi<\pi / 2$. For $f(x)=\sin (x), f^{3}(x)=-\cos (x)$, which means that the interpolation error can be written as:

$$
f(x)-Q_{2}(x)=\frac{-\cos (\xi)}{3!}(x+\pi) x(x-\pi / 2) .
$$

