AMSC/CMSC 460: Final Exam - SOLUTIONS
 Prof. Doron Levy
 May 17, 2018

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 2 hours.
- Good luck!

Additional instructions:

- The exam has 2 parts: part A and part B. Each part has 4 problems.
- You should solve only 3 out of the 4 problems in each part.
- No extra credit will be given for solving more than 3 problems in each part.
- If you solve more than 3 problems, you should clearly indicate which problems you would like to be graded - otherwise, the first 3 problems in each part will be graded.

Part A: Choose 3 problems out of problems 1-4 (Each problem $=10$ points)

1. Find the most accurate approximation to $f^{\prime}(x)$ using $f\left(x-\frac{h}{2}\right), f(x), f(x+h)$. What is the order of accuracy of this approximation?

Solution: We would like to approximate

$$
f^{\prime}(x) \approx A f\left(x-\frac{h}{2}\right)+B f(x)+C f(x+h) .
$$

We write the Taylor expansions for each of the terms:

$$
\begin{aligned}
f\left(x-\frac{h}{2}\right) & =f(x)-\frac{h}{2} f^{\prime}(x)+\frac{1}{2}\left(\frac{h}{2}\right)^{2} f^{\prime \prime}(x)-\frac{1}{6}\left(\frac{h}{2}\right)^{3} f^{\prime \prime \prime}(x)+\ldots \\
f(x+h) & =f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\frac{1}{6} h^{3} f^{\prime \prime \prime}(x)+\ldots
\end{aligned}
$$

Hence, by setting the coefficients of $f(x)$ and $f^{\prime \prime}(x)$ in the expansion to zero, and the coefficient of $f^{\prime}(x)$ to 1 , we get the following linear system:

$$
\left\{\begin{array}{l}
A+B+C=0 \\
-\frac{h}{2} A+h C=1 \\
\frac{h^{2}}{2}\left(\frac{A}{4}+C\right)=0
\end{array}\right.
$$

The solution of this system is:

$$
A=-\frac{4}{3 h}, \quad B=\frac{1}{h}, \quad C=\frac{1}{3 h} .
$$

Hence, the approximation is

$$
f^{\prime}(x) \approx \frac{-4 f\left(x-\frac{h}{2}\right)+3 f(x)+f(x+h)}{3 h} .
$$

The order of the approximation is $O\left(h^{2}\right)$ since the next term in the Taylor expansion does not vanish, and the h^{3} in front of the $f^{\prime \prime \prime}(x)$ term is to be divided by h since this term is multiplied by A and by C, both which are $O(1 / h)$.
2. Find a quadrature of the form

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x=A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

that is exact for all polynomials of degree ≤ 3.

Solution: This is a Gaussian quadrature. The given interval $[-1,1]$ and weight, $1 / \sqrt{1-x^{2}}$, correspond to Chebyshev polynomials. Since the quadrature is based on two points, x_{0} and x_{1} are the roots of the quadratic Chebyshev polynomial, $T_{2}(x)=2 x T_{1}(x)-T_{0}(x)=2 x^{2}-1$. This means that the quadrature points are

$$
x_{0,1}= \pm \frac{1}{\sqrt{2}} .
$$

Once the quadrature points are known, all that remains is to find the coefficients, A_{0} and A_{1}. We do this through the method of undetermined coefficients. FIrst, we require that the quadrature is exact for $f(x)=1$, i.e.,

$$
\pi=\int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}=A_{0}+A_{1}
$$

We also require that the quadrature is exact for $f(x)=x$, i.e.,

$$
0=\int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{A_{0}}{\sqrt{2}}+\frac{A_{1}}{\sqrt{2}}
$$

Hence $A_{0}=A_{1}=\pi / 2$, and the desired quadrature is

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \approx \frac{\pi}{2}\left(f\left(-\frac{1}{\sqrt{2}}\right)+f\left(\frac{1}{\sqrt{2}}\right)\right)
$$

3. (a) Write the Lagrange form of the linear interpolation polynomial that interpolates $f(x)$ at $x=-1,1$.

Solution:

$$
\begin{aligned}
P_{1}(x) & =f(-1) \frac{x-1}{-1-1}+f(1) \frac{x+1}{1+1}= \\
& =f(-1) \frac{x-1}{-2}+f(1) \frac{x+1}{2}= \\
& =x \frac{f(1)-f(-1)}{2}+\frac{f(1)+f(-1)}{2}
\end{aligned}
$$

(b) Use the interpolant you obtained in part (a) to find a weighted quadrature of the form

$$
\int_{-2}^{2} x f(x) d x=A_{0} f(-1)+A_{1} f(1) .
$$

Solution:

We approximate

$$
\begin{aligned}
\int_{-2}^{2} x f(x) d x & \approx \int_{-2}^{2} x P_{1}(x) d x= \\
& =\int_{-2}^{2}\left(x^{2} \frac{f(1)-f(-1)}{2}+x \frac{f(1)+f(-1)}{2}\right) d x=\ldots \\
& =\frac{8}{3}(f(1)-f(-1))
\end{aligned}
$$

Hence, the quadrature coefficients are $A_{0}=\frac{8}{3}$ and $A_{1}=-\frac{8}{3}$.
4. Find a linear polynomial, $P_{1}^{*}(x)$, that minimizes

$$
\int_{-\infty}^{\infty} e^{-x^{2}}\left(x^{3}-Q_{1}(x)\right)^{2} d x
$$

among all polynomials $Q_{1}(x)$ of degree ≤ 1.

Solution:

This is a least squares problem with Hermite polynmials (the weight is $w(x)=e^{-x^{2}}$ and the interval is $(-\infty, \infty)$. With $H_{0}(x)=1$ and $H_{1}(x)=2 x$, the solution is given by

$$
P_{1}^{*}(x)=c_{0} H_{0}(x)+c_{1} H_{1}(x),
$$

with

$$
c_{0}=\frac{\left\langle x^{3}, H_{0}\right\rangle_{w}}{\left\|H_{0}\right\|_{w}^{2}}=\frac{\int_{-\infty}^{\infty} e^{-x^{2}} x^{3} d x}{\cdots}=0
$$

and

$$
c_{1}=\frac{\left\langle x^{3}, H_{1}\right\rangle_{w}}{\left\|H_{1}\right\|_{w}^{2}}=\frac{\int_{-\infty}^{\infty} e^{-x^{2}} x^{4} d x}{\int_{-\infty}^{\infty}\left(H_{1}(x)\right)^{2} e^{-x^{2}} d x}=\frac{2 \Gamma(5 / 2)}{2 \sqrt{\pi}}=\frac{3}{4}
$$

Hence the solution is

$$
P_{1}^{*}(x)=c_{1} H_{1}(x)=\frac{3}{2} x .
$$

Part B: Choose 3 problems out of problems 5-8 (Each problem $=10$ points)

5. Find values for a, b, c, d such that the following function, $s(x)$, is a cubic spline on $[0,2]$ that satisfies $s^{\prime}(2)=0$,

$$
s(x)= \begin{cases}x^{3}-a x^{2}+b, & 0 \leq x \leq 1 \\ c x^{3}+d x^{2}, & 1 \leq x \leq 2\end{cases}
$$

Solution: We start by computing the first and second derivatives of $s(x)$:

$$
\begin{aligned}
& s^{\prime}(x)= \begin{cases}3 x^{2}-2 a x, & 0 \leq x \leq 1, \\
3 c x^{2}+2 d x, & 1 \leq x \leq 2\end{cases} \\
& s^{\prime \prime}(x)= \begin{cases}6 x-2 a, & 0 \leq x \leq 1, \\
6 c x+2 d, & 1 \leq x \leq 2\end{cases}
\end{aligned}
$$

The continuity of $s(x)$ at $x=1$ implies

$$
1-a+b=c+d
$$

The continuity of $s^{\prime}(x)$ at $x=1$ implies

$$
3-2 a=3 c+2 d
$$

The continuity of $s^{\prime \prime}(x)$ at $x=1$ implies

$$
6-2 a=6 c+2 d .
$$

Requiring that $s^{\prime}(2)=0$ implies that

$$
12 c+4 d=0
$$

The solution of the linear system is: $a=3, b=0, c=1$, and $d=-3$, which means that the spline is simply a cubic polynomial

$$
s(x)=x^{3}-3 x^{2}, \quad 0 \leq x \leq 2
$$

6. Use the Gram-Schmidt process to find orthonormal polynomials of degrees 0 and 1 with respect to the inner product

$$
\langle f, g\rangle_{w}=\int_{0}^{\infty} f(x) g(x) e^{-2 x} d x
$$

Solution: We will first compute the polynomials without normalizing them. At the end we will compute the normalization constants. We start with the constant polynomial, $P_{0}(x)=1$. We then set

$$
P_{1}(x)=x-c P_{0}=x-c,
$$

and compute c such that P_{1} is orthogonal to P_{0} :

$$
\begin{aligned}
0 & =\left\langle P_{0}, P_{1}\right\rangle_{w}=\int_{0}^{\infty} 1(x-c) e^{-2 x} d x=\int_{0}^{\infty} x e^{-2 x} d x-c \int_{0}^{\infty} e^{-2 x} d x= \\
& =\left.\frac{e^{-2 x}}{-2}\left(x-\frac{1}{-2}\right)\right|_{0} ^{\infty}-\left.c \frac{e^{-2 x}}{-2}\right|_{0} ^{\infty}=\frac{1}{2}\left(\frac{1}{2}-c\right)
\end{aligned}
$$

Hence $c=1 / 2$, and therefore $P_{1}(x)=x-\frac{1}{2}$. We now normalize $P_{0}(x)$ and $P_{1}(x)$. We set $\tilde{P}_{0}=c P_{0}$. Then

$$
1=\left\langle\tilde{P}_{0}, \tilde{P}_{0}\right\rangle_{w}=c^{2}\langle 1,1\rangle_{w}=c^{2} \int_{0}^{\infty} e^{-2 x} d x=\left.c^{2} \frac{e^{-2 x}}{-2}\right|_{0} ^{\infty}=\frac{c^{2}}{2}
$$

Hence $c=\sqrt{2}$ and $\tilde{P}_{0}=\sqrt{2}$. Setting $\tilde{P}_{1}(x)=c P_{1}(x)$ we have

$$
1=\left\langle\tilde{P}_{1}, \tilde{P}_{1}\right\rangle_{w}=c^{2}\left\langle x-\frac{1}{2}, x-\frac{1}{2}\right\rangle_{w}=c^{2} \int_{0}^{\infty}\left(x-\frac{1}{2}\right)^{2} e^{-2 x} d x=\ldots=\frac{c^{2}}{8}
$$

Hence $c=\sqrt{8}$ and $\tilde{P}_{1}(x)=\sqrt{8}(x-1 / 2)$.
7. Explain what the floating point representation of $\frac{1}{10}$ looks like on a 32-bit machine.

Solution:

Write $1 / 10$ in base 2 :

$$
\left(\frac{1}{10}\right)_{2}=0.0001100110011 \ldots=1.100110011 \ldots \times 2^{-4}
$$

We divide the 32 bits into 3 parts: 1 bit for the sign. In this case since the number is positive we will use 0 . The next 8 bits are for the exponent. In this case the exponent is -4 , which we will write using 2's complement as 11111100 (this should be explained). Finally, we use the remaining 23 bits to represent the mantissa. We skip the leading " 1 " and write 10011001100110011001100 . Overall, the number -4 is stored as:

$$
0|11111100| 10011001100110011001100 .
$$

8. Find a Cholesky decomposition of

$$
A=\left(\begin{array}{ccc}
16 & 12 & 4 \\
12 & 13 & 3 \\
4 & 3 & 17
\end{array}\right)
$$

Solution: Using standard techniques we find a lower triangular matrix

$$
L=\left(\begin{array}{lll}
4 & 0 & 0 \\
3 & 2 & 0 \\
1 & 0 & 4
\end{array}\right)
$$

such that $L L^{T}=A$.

- Chebyshev polynomials

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)=0, \quad \forall n \geq 1 . \\
& \int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=0, \quad m \neq n . \\
& \int_{-1}^{1} \frac{\left(T_{n}(x)\right)^{2}}{\sqrt{1-x^{2}}} d x= \begin{cases}\pi, & n=0, \\
\frac{\pi}{2}, & n=1,2, \ldots\end{cases} \\
& \int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\pi .
\end{aligned}
$$

- Hermite polynomials

$$
\begin{aligned}
& H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \quad \forall n \geq 1 \\
& \int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x)=\delta_{n m} 2^{n} n!\sqrt{\pi} \\
& \int_{-\infty}^{\infty} x^{m} e^{-x^{2}} d x=\Gamma\left(\frac{m+1}{2}\right), \quad \text { for even } m \\
& \Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi} .
\end{aligned}
$$

- Other formulas

$$
\begin{aligned}
& \int x e^{a x} d x=\frac{e^{a x}}{a}\left(x-\frac{1}{a}\right) . \\
& \int x^{2} e^{a x} d x=\frac{e^{a x}}{a}\left(x^{2}-\frac{2 x}{a}+\frac{2}{a^{2}}\right) .
\end{aligned}
$$

