
AMSC/CMSC 460: Midterm 2

Prof. Doron Levy

April 17, 2018

Read carefully the following instructions:

• Write your name & student ID on the exam book and sign it.

• You may not use any books, notes, or calculators.

• Solve all problems. Answer all problems after carefully reading them. Start every
problem on a new page.

• Show all your work and explain everything you write.

• Exam time: 75 minutes

• Good luck!
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Problems: (Each problem = 10 points)

1. (a) Explain the advantages of interpolating at Chebyshev points.

Solution: When interpolating data that is sampled from a function f(x) at
n+ 1 points x0, . . . , xn, the interpolation error is given by

f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi).

When considering the interval [−1, 1], choosing x0, . . . , xn as Chebyshev points
(i.e. the n+ 1 roots of Tn+1(x), minimizes the product term in the error, i.e.,

max
x∈[−1,1]

n∏
i=0

(x− xi),

has the smallest value out of all possible choices of interpolation points.

(b) Compute the unique interpolating polynomial of degree ≤ 2 that interpolates
data sampled from f(x) = x2 at an appropriate number of Chebyshev points
on the interval [−1, 1].

Solution: Since we are asked to compute a quadratic polynomial that inter-
polates data that is sampled from a quadratic function, we can immediately
use the uniqueness of the interpolating polynomial and conclude that the
answer must be the function itself, i.e., P2(x) = x2. Any direct calculation
must lead to this answer.

(c) Repeat part (b) with f(x) = x4.

Solution: Here we should compute the answer. We are seeking a quadratic
interpolant, which means that we need 3 values. The 3 values should be the
roots of the cubic Chebyshev polynomial T3(x) = 4x3 − 3x:

x0 = −
√

3

2
, x1 = 0, x2 =

√
3

2
.

Computing the divided differences, we get

f(x0) =
9

16
, f [x0, x1] = − 9

8
√

3
, f [x0, x1, x2] =

3

4
.

Hence, the interpolating polynomial is

P2(x) =
9

16
− 9

8
√

3

(
x+

√
3

2

)
+

3

4

(
x+

√
3

2

)
x = . . . =

3

4
x2.

2



Note: Chebyshev polynomials are given by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x) = 0,∀n ≥ 1.

2. Find a spline of degree 2, S(x), on the interval [0, 2], for which S(0) = 0, S(1) = 2,
S(2) = 0, and S ′(0) = 0. Use the points 0, 1, 2 as the knots.

Solution:

Consider a quadratic spline of the form

S(x) =

{
S0(x), 0 ≤ x ≤ 1,
S1(x), 1 ≤ x ≤ 2.

=

{
a0 + a1x+ a2x

2, 0 ≤ x ≤ 1,
b0 + b1x+ b2x

2, 1 ≤ x ≤ 2.

We write 6 equations for the 6 unknowns. First we have the 4 interpolation
conditions:

• S0(0) = 0 =⇒ a0 = 0.

• S0(1) = 2 =⇒ a0 + a1 + a2 = 2.

• S1(1) = 2 =⇒ b0 + b1 + b2 = 2.

• S1(2) = 0 =⇒ b0 + 2b1 + 4b2 = 0.

The continuity of the first derivative implies that

S ′0(1) = S ′1(1) =⇒ a1 + 2a2 = b1 + 2b2.

Finally, we have the additional condition at the first derivative:

S ′(0) = 0 =⇒ a1 = 0.

Solving for a0, a1, a2, b0, b1, b2 we end up with

S(x) =

{
2x2, 0 ≤ x ≤ 1,
−8 + 16x− 6x2, 1 ≤ x ≤ 2.

3. Use the Gram-Schmidt process to find orthogonal polynomials of degrees 0, 1, 2,
on the interval [0, 1], with respect to the weight w(x) = 1 + x.

Note: you do not need to normalize the polynomials. For the quadratic polyno-
mial, P2(x), write the coefficients but do not explicitly calculate the integrals.

Solution: We note that we are only asked to find orthogonal polynomials without
normalizing them. Set P0(x) = 1. We then let P1(x) = x − cP0(x). The orthog-
onality condition, 〈P0, P1〉w = 0, implies that 〈P0, x− cP0〉w =, i.e., 〈P0, x〉w =
c 〈P0, P0〉w, or

c =
〈P0, x〉w
‖P0‖2w

=

∫ 1

0
x · 1 · (1 + x)dx∫ 1

0
12(1 + x)dx

= . . . =
5

9
.
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Hence P1(x) = x− 5
9
. For the quadratic polynomial, we set

P2(x) = x2 − cP0(x)− dP1(x).

The orthogonality condition 〈P0, P2〉w = 0 implies that

c =
〈x2, P0〉w
‖P0‖2w

=

∫ 1

0
x2 · 1 · (1 + x)dx

3
2

The orthogonality condition 〈P1, P2〉w = 0 implies that

d =
〈x2, P1〉w
‖P1‖2w

=

∫ 1

0
x2(x− 5

9
)(x+ 1)dx∫ 1

0
(x− 5

9
)2(x+ 1)dx

.

4. Let f(x) = x2. Find the quadratic polynomial Q∗2(x) that minimizes∫ ∞
−∞

e−x
2

(f(x)−Q2(x))2dx,

among all quadratic polynomials Q2(x).

Note: You may use:

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2xHn(x)− 2nHn−1(x),∀n ≥ 1∫ ∞
−∞

e−x
2

Hn(x)Hm(x) = δnm2nn!
√
π∫ ∞

−∞
xme−x

2

dx = Γ

(
m+ 1

2

)
, for even m

Γ(1/2) =
√
π, Γ(3/2) = 1

2

√
π, Γ(5/2) = 3

4

√
π.

Solution: We have the appropriate orthogonal polynomials:

H0(1) = 1, H1(x) = 2x, H2(x) = 4x2 − 2.

We note that the norms are

‖H0‖2 =
√
π, ‖H1‖2 = 2

√
π, ‖H2‖2 = 8

√
π.

Set

Q∗2(x) = c0H0(x) + c1H1(x) + c2H2(x).

Then

c0 =
〈f,H0〉w
‖H0‖2w

=

∫∞
−∞ e

−x2x2dx
√
π

=

√
π
2√
π

=
1

2
.
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c1 =
〈f,H1〉w
‖H1‖2w

=

∫∞
−∞ e

−x2x2 · 2xdx
2
√
π

= 0.

c2 =
〈f,H2〉w
‖H2‖2w

=

∫∞
−∞ e

−x2x2(4x2 − 2)dx

8
√
π

=
4Γ(5

2
)− 2Γ(3

2
)

8
√
π

=
43
4

√
π − 21

2

√
π

8
√
π

=
1

4
.

Hence

Q∗2(x) =
1

2
H0(x) +

1

4
H2(x) =

1

2
+

1

4
(4x2 − 2) = x2

as should be...
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