AMSC/CMSC 460: HW \#2

Due: Thursday 2/8/18 (in class)

Please submit the solution to at least one problem in LaTeX.

1. Perform five iterations of Newton's method for finding a root of $p(x)=x^{3}-5 x^{2}+3 x-7$ starting with $x_{0}=5$.
2. Write a Matlab program to solve the equation $x=\tan x$ by means of Newton's method. Find the roots closest to 4.5 and 7.7.
3. Use the bisection method to compute a positive root of $x^{2}-4 x \sin x+(2 \sin x)^{2}-1=0$ accurate to 0.01 .
4. The function

$$
f(x)=\frac{x}{\sqrt{1+x^{2}}}
$$

has a unique root $f(x)=0$ only for $x=0$.
(a) Show that Newton's method gives $x_{k+1}=-x_{k}^{3}$. Conclude that the method succeeds if and only if $\left|x_{0}\right|<1$.
(b) Draw graphs to illustrate the first few iterates when $x_{0}=.25, x_{0}=.5$, and $x_{0}=1.5$.
5. Let p be a positive number. What is the value of the following expression?

$$
x=\sqrt{p+\sqrt{p+\sqrt{p+\cdots}}}
$$

Hint: observe that x can be written as the limit of a sequence for which the elements are defined as $x_{n+1}=\sqrt{p+x_{n}}$.

6 . Let $p>1$. What is the value of the following continued fraction?

$$
x=\frac{1}{p+\frac{1}{p+\frac{1}{p+\cdots}}}
$$

7. Write down two different fixed-point procedures for finding a zero of the function $f(x)=$ $2 x^{2}+6 e^{-x}-4$.
8. Show that the following method can be used for computing \sqrt{R} :

$$
x_{n+1}=\frac{x_{n}\left(x_{n}^{2}+3 R\right)}{3 x_{n}^{2}+R}
$$

