AMSC/CMSC 460: HW \#4
Due: Thursday $2 / 22 / 18$ (in class)

Please submit the solution to at least one problem in LaTeX.

1. Compute the infinity norm and the condition number in the infinity norm for the following matrices: (you may use matlab to compute A^{-1})

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
-1 & 0.1 & 0.05 \\
0.1 & 1.1 & 0.1 \\
0.05 & -0.1 & 0.9
\end{array}\right), \\
A=\left(\begin{array}{ccc}
2 & 2.2 & 1 \\
2 & 2 & 1 \\
1.9 & 2.1 & 0.9
\end{array}\right) .
\end{gathered}
$$

2. Let $f(x)=-2 x^{5}$. Find the second Taylor polynomial $P_{2}(x)$ about $x_{0}=0$.
3. Let $f(x)=\sqrt{x+1}$. Find the third Taylor polynomial $P_{3}(x)$ about $x_{0}=0$. Use $P_{3}(x)$ to approximate $\sqrt{0.45}, \sqrt{0.8}, \sqrt{1.1}$, and $\sqrt{1.4}$ Determine the actual error of these approximations.
4. The Maclaurin series for $(1+x)^{n}$ is also known as the binomial series. It states that

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots, \quad\left(x^{2}<1\right) .
$$

Derive this series by computing a Taylor's for $(1+x)^{n}$ around $x=0$. Note that it is not assumed that n is an integer. Give its particular form in summation notation for $n=\frac{1}{2}$. Use this expression to approximate $\sqrt{1.0001}$.
5. Read Chapters 2 and 3 in Michael Overton's book "Numerical Computing with IEEE Floating Point Arithmetic". Solve problems 3.1, 3.2, 3.3, 3.4, 3.6, 3.8. These chapters can be downloaded from the university library's webpage.

