AMSC/CMSC 460: HW \#6
Due: Tuesday 3/27/18 (in class)

Please submit the solution to at least one problem in LaTeX.

1. Use the zeros of the Chebyshev polynomial $T_{2}(x)$ to construct a linear interpolating polynomial for the following functions on the interval $[-1,1]$:
(a) $f(x)=e^{-2 x}$
(b) $f(x)=\ln (x+3)$
2. Repeat both parts of problem (2) using the zeros of $T_{3}(x)$ to construct quadratic interpolation polynomials at Chebyshev points for the given functions.
3. Use the zeros of the Chebyshev polynomial $T_{3}(x)$ and transformations of the given interval to construct an interpolating polynomial of degree two for the following functions
(a) $f(x)=e^{3 x}+x$ on $[0,3]$
(b) $f(x)=(x+2) \ln x$ on $[2,2.5]$
4. Find a quartic polynomial (written in Newton's form) that takes these values: $p(0)=1$, $p(1)=-2, p(2)=3, p^{\prime}(0)=-2$, and $p^{\prime}(1)=2$.
5. What condition will have to be placed on the nodes x_{0} and x_{1} if the interpolation problem

$$
p\left(x_{i}\right)=c_{i 0}, \quad p^{\prime \prime}\left(x_{i}\right)=c_{i 2}, \quad i=0,1
$$

is to be solvable by a cubic polynomial (for arbitrary $c_{i j}$)?

