AMSC/CMSC 460: HW \#7

Due: Tuesday $4 / 3 / 18$ (in class)

Please submit the solution to at least one problem in LaTeX.

1. Determine all the values of a, b, c, d, e for which the following function is a cubic spline

$$
f(x)= \begin{cases}a(x-2)^{2}+b(x-1)^{3}, & x \in(-\infty, 1] \\ c(x-2)^{2}, & x \in[1,3], \\ d(x-2)^{2}+e(x-3)^{3}, & x \in[3, \infty)\end{cases}
$$

Next, determine the values of the parameters so that the cubic spline interpolates this table

$$
\begin{array}{c|c|c|c}
x & 0 & 1 & 4 \\
\hline y & 10 & 7 & 15
\end{array}
$$

2. Find a natural cubic spline function whose knots are $-1,0,2$ and that takes these values

$$
\begin{array}{l|l|l|l}
x & -1 & 0 & 2 \\
\hline y & 10 & 7 & 4
\end{array}
$$

3. Use Matlab's built-in spline routine to plot a cubic spline function that interpolates the following 11 points:

$$
x_{i}=i / 10, \quad y_{i}=e^{x_{i}}, \quad i=0, \ldots 10 .
$$

If you have access to Matlab's spline toolbox, use the csape routine to plot the spline function that interpolates this exponential data with different boundary conditions (try not-a-knot, periodic, etc.). See https://www.mathworks.com/help/curvefit/csape.html

