AMSC/CMSC 460: HW \#9

Due: Tuesday $4 / 26 / 18$ (in class)

Please submit the solution to at least one problem in LaTeX.

1. Using Taylor expansions, verify that the following two formulas approximate the third derivative. Find the error terms.

$$
\begin{gathered}
f^{\prime \prime \prime}(x) \approx \frac{1}{h^{3}}[f(x+3 h)-3 f(x+2 h)+3 f(x+h)-f(x)] \\
f^{\prime \prime \prime}(x) \approx \frac{1}{2 h^{3}}[f(x+2 h)-2 f(x+h)+2 f(x-h)-f(x-2 h)]
\end{gathered}
$$

2. Using Taylor expansions, derive the error term for the formula

$$
f^{\prime \prime}(x) \approx \frac{1}{h^{2}}[f(x)-2 f(x+h)+f(x+2 h)]
$$

3. Using the method of undetermined coefficients, establish the most accurate formula of the form

$$
f^{\prime}(x) \approx A f(x-h)+B f(x+h)+C f(x+2 h)+D f(x+3 h) .
$$

4. Using the method of undetermined coefficients, establish the most accurate formula of the form

$$
f^{\prime \prime}(x) \approx A f(x)+B f(x+h)+C f(x+2 h)+D f(x+3 h)
$$

5. Use the values of $f(x)$ at $x-3 h, x-h, x+h, x+3 h$ to obtain the most accurate approximation of $f^{\prime}(x)$.
6. Interpolate the values of $f(x)$ at $x_{0}-h, x_{0}, x_{0}+2 h$. Use the interpolant to find an approximation for $f^{\prime}\left(x_{0}+h / 2\right)$.
7. Interpolate the values of $f(x)$ at $x_{0}-h, x_{0}, x_{0}+h$. Use the interpolant to find an approximation for $f^{\prime}\left(x_{0}-2 h\right)$. Note that the approach is still valid even though this point is outside of the interval $\left[x_{0}-h, x_{0}+h\right]$.
