AMSC/CMSC 460: Midterm 2

Prof. Doron Levy
November 3, 2016

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

Problems:

1. (10 points) Using Newton's form of the Hermite interpolation polynomial, find the polynomial of degree ≤ 3 that interpolates: $f(1)=0, f^{\prime}(1)=2, f(2)=1$, $f^{\prime}(2)=3$. (Compute explicitly all the divided differences).
2. Let $w(x)=1, \forall x \in[-3,2]$.
(a) (10 points) Find the first two orthogonal polynomials with respect to the inner product

$$
\langle f(x), g(x)\rangle_{w}=\int_{-3}^{2} f(x) g(x) w(x) d x
$$

(b) (10 points) Normalize the polynomials you found in part (a).
(c) (10 points) Find the polynomial of degree $0, Q_{0}(x)$, that minimizes

$$
\int_{-3}^{2}\left(e^{x}-Q_{0}(x)\right)^{2} d x
$$

3. Consider the following three data points: $(-\pi, 0),(0,0),(\pi / 2,1)$.
(a) (10 points) Write the Lagrange form of the quadratic polynomial that interpolates the given data.
(b) (10 points) Repeat part (a) with Newton's form. Compute all the divided differences.
(c) (5 points) Assuming that the given data points were sampled from $f(x)=$ $\sin (x)$, find an expression for the interpolation error.
