AMSC/CMSC 460: Final Exam

Prof. Doron Levy
May 16, 2019

Read carefully the following instructions:

- Write your name \& student ID on the exam book and sign it.
- You may not use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 2 hours.
- Good luck!

Additional instructions:

- You should solve only 6 out of the 7 problems. Each problem $=10$ points.
- No extra credit will be given for solving more than 6 problems.
- If you solve more than 6 problems, you should clearly indicate which problems you would like to be graded - otherwise, the first 6 problems in each part will be graded.

Solve 6 problems out of the following 7 problems

1. Find the most accurate approximation to the second derivative, $f^{\prime \prime}(x)$, using $f(x-2 h), f(x), f(x+4 h)$. What is the order of accuracy of this approximation?
2. Let $D(h)$ be a first-order approximation to $f^{\prime}(x)$ such that

$$
f^{\prime}(x)=D(h)+C_{1} h+C_{2} h^{2}+\ldots
$$

(a) Use Richardson's extrapolation to find a second-order approximation of $f^{\prime}(x)$.
(b) What is the result of part (a) if

$$
D(h)=\frac{f(x+h)-f(x-3 h)}{4 h} .
$$

3. Find a linear polynomial, $P_{1}^{*}(x)$, that minimizes

$$
\int_{-1}^{1} \frac{\left(x^{2}-Q_{1}(x)\right)^{2}}{\sqrt{1-x^{2}}} d x
$$

among all polynomials $Q_{1}(x)$ of degree ≤ 1.
4. (a) Find a quadrature of the form

$$
\int_{-\infty}^{\infty} f(x) e^{-x^{2}} d x=A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

that is exact for all polynomials of degree ≤ 3.
(b) Use the result of part (a) to approximate $\int_{-\infty}^{\infty} x^{6} e^{-x^{2}} d x$.
5. Consider the ODE $y^{\prime}(t)=f(t, y(t))$ together with the initial condition $y(0)=y_{0}$.
(a) Write an equivalent integral formulation to the ODE and show how to obtain Euler's method using a rectangular quadrature.
(b) Let $f(t, y(t))=t^{2} y(t)$. Compute two iterations of Euler's method for the ODE $y^{\prime}=f(t, y(t))$, starting from $y(0)=1$. Assume that the time step is $h=0.1$.
6. Let $f(x)=x^{4}$ in $[-1,1]$.
(a) Write the Lagrange form of the interpolating polynomial $P_{2}(x)$, of degree ≤ 2, that interpolates the values of $f(x)$ at 3 Chebyshev points.
(b) Explain the advantages of interpolating at Chebyshev points.
7. Let $f(x)=e^{-x}-x$.
(a) Prove that $f(x)$ must have an least one root in the interval $[0,10]$.
(b) Explain why $f(x)$ has only one root in the interval $[0,10]$.
(c) Write Newton's method for approximating a root of $f(x)$, and compute two iterations of the method, starting from $x_{0}=1$.

- Chebyshev polynomials

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)=0, \quad \forall n \geq 1 . \\
& \int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=0, \quad m \neq n . \\
& \int_{-1}^{1} \frac{\left(T_{n}(x)\right)^{2}}{\sqrt{1-x^{2}}} d x=\left\{\begin{array}{cc}
\pi, & n=0, \\
\frac{\pi}{2}, & n=1,2, \ldots
\end{array}\right. \\
& \int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C, \quad \int \frac{x^{2} d x}{\sqrt{1-x^{2}}}=\frac{1}{2}\left(\arcsin x-x \sqrt{1-x^{2}}\right)+C .
\end{aligned}
$$

- Hermite polynomials

$$
\begin{aligned}
& H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \quad \forall n \geq 1 \\
& \int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x)=\delta_{n m} 2^{n} n!\sqrt{\pi} \\
& \int_{-\infty}^{\infty} x^{m} e^{-x^{2}} d x=\Gamma\left(\frac{m+1}{2}\right), \quad \text { for even } m \\
& \Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi} .
\end{aligned}
$$

